pytorch中有哪些归一化的方式?

在 PyTorch 中,归一化是一种重要的操作,用于调整数据分布或模型参数,以提高模型的训练效率和性能。以下是常见的归一化方式及其应用场景:

1. 数据归一化

(1)torch.nn.functional.normalize

对输入张量沿指定维度进行 L2 范数归一化,使得张量的范数为 1。

代码示例:

python 复制代码
import torch
import torch.nn.functional as F

x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
normalized_x = F.normalize(x, p=2, dim=1)  # 每行进行归一化
print(normalized_x)
(2)自定义归一化

将输入数据缩放到特定范围(如 [0, 1][-1, 1])。

代码示例:

python 复制代码
x = torch.tensor([1.0, 2.0, 3.0])
x_min, x_max = x.min(), x.max()
normalized_x = (x - x_min) / (x_max - x_min)  # 归一化到 [0, 1]

2. 批归一化 (Batch Normalization)

(1)torch.nn.BatchNorm1d/2d/3d

对多维输入(如图像、序列数据)进行批归一化,主要用于神经网络的隐藏层。

  • BatchNorm1d:用于 1D 输入(如序列或全连接层的输出)。
  • BatchNorm2d :用于 2D 输入(如卷积层的输出,(N, C, H, W))。
  • BatchNorm3d :用于 3D 输入(如 3D 卷积的输出,(N, C, D, H, W))。

代码示例:

python 复制代码
import torch
import torch.nn as nn

batch_norm = nn.BatchNorm2d(num_features=3)  # 通道数为 3
x = torch.randn(4, 3, 8, 8)  # (N, C, H, W)
normalized_x = batch_norm(x)

3. 层归一化 (Layer Normalization)

(1)torch.nn.LayerNorm

对每个样本的特定维度进行归一化,常用于 RNN 或 Transformer。

代码示例:

python 复制代码
import torch
import torch.nn as nn

layer_norm = nn.LayerNorm(normalized_shape=10)  # 归一化的维度大小
x = torch.randn(5, 10)  # (batch_size, features)
normalized_x = layer_norm(x)

4. 实例归一化 (Instance Normalization)

(1)torch.nn.InstanceNorm1d/2d/3d

对每个样本的特征图进行归一化,适用于风格迁移或生成模型。

代码示例:

python 复制代码
import torch
import torch.nn as nn

instance_norm = nn.InstanceNorm2d(num_features=3)
x = torch.randn(4, 3, 8, 8)  # (N, C, H, W)
normalized_x = instance_norm(x)

5. 局部响应归一化 (Local Response Normalization, LRN)

(1)torch.nn.LocalResponseNorm

模仿生物神经元的抑制机制,主要在早期 CNN(如 AlexNet)中使用。

代码示例:

python 复制代码
import torch
import torch.nn as nn

lrn = nn.LocalResponseNorm(size=5)
x = torch.randn(1, 10, 8, 8)  # (N, C, H, W)
normalized_x = lrn(x)

6. 权值归一化 (Weight Normalization)

(1)torch.nn.utils.weight_norm

对权值进行归一化,常用于加速收敛。

代码示例:

python 复制代码
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm

linear = nn.Linear(10, 5)
linear = weight_norm(linear)  # 对权值进行归一化

7. 谱归一化 (Spectral Normalization)

(1)torch.nn.utils.spectral_norm

通过对权值矩阵进行奇异值分解,约束最大奇异值,常用于生成对抗网络(GAN)。

代码示例:

python 复制代码
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm

conv = nn.Conv2d(3, 16, 3)
conv = spectral_norm(conv)  # 对卷积核进行谱归一化

8. 正则化归一化

(1)梯度裁剪(Grad Clipping)

通过裁剪梯度的范数来实现归一化,主要用于防止梯度爆炸。

相关推荐
陈橘又青2 分钟前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据
t***31656 分钟前
爬虫学习案例3
爬虫·python·学习
中杯可乐多加冰20 分钟前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒1 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
AI小云1 小时前
【数据操作与可视化】Pandas数据处理-其他操作
python·pandas
龙智DevSecOps解决方案1 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋1 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI1 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索
亚马逊云开发者1 小时前
Amazon Bedrock助力飞书深诺电商广告分类
人工智能