pytorch中有哪些归一化的方式?

在 PyTorch 中,归一化是一种重要的操作,用于调整数据分布或模型参数,以提高模型的训练效率和性能。以下是常见的归一化方式及其应用场景:

1. 数据归一化

(1)torch.nn.functional.normalize

对输入张量沿指定维度进行 L2 范数归一化,使得张量的范数为 1。

代码示例:

python 复制代码
import torch
import torch.nn.functional as F

x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
normalized_x = F.normalize(x, p=2, dim=1)  # 每行进行归一化
print(normalized_x)
(2)自定义归一化

将输入数据缩放到特定范围(如 [0, 1][-1, 1])。

代码示例:

python 复制代码
x = torch.tensor([1.0, 2.0, 3.0])
x_min, x_max = x.min(), x.max()
normalized_x = (x - x_min) / (x_max - x_min)  # 归一化到 [0, 1]

2. 批归一化 (Batch Normalization)

(1)torch.nn.BatchNorm1d/2d/3d

对多维输入(如图像、序列数据)进行批归一化,主要用于神经网络的隐藏层。

  • BatchNorm1d:用于 1D 输入(如序列或全连接层的输出)。
  • BatchNorm2d :用于 2D 输入(如卷积层的输出,(N, C, H, W))。
  • BatchNorm3d :用于 3D 输入(如 3D 卷积的输出,(N, C, D, H, W))。

代码示例:

python 复制代码
import torch
import torch.nn as nn

batch_norm = nn.BatchNorm2d(num_features=3)  # 通道数为 3
x = torch.randn(4, 3, 8, 8)  # (N, C, H, W)
normalized_x = batch_norm(x)

3. 层归一化 (Layer Normalization)

(1)torch.nn.LayerNorm

对每个样本的特定维度进行归一化,常用于 RNN 或 Transformer。

代码示例:

python 复制代码
import torch
import torch.nn as nn

layer_norm = nn.LayerNorm(normalized_shape=10)  # 归一化的维度大小
x = torch.randn(5, 10)  # (batch_size, features)
normalized_x = layer_norm(x)

4. 实例归一化 (Instance Normalization)

(1)torch.nn.InstanceNorm1d/2d/3d

对每个样本的特征图进行归一化,适用于风格迁移或生成模型。

代码示例:

python 复制代码
import torch
import torch.nn as nn

instance_norm = nn.InstanceNorm2d(num_features=3)
x = torch.randn(4, 3, 8, 8)  # (N, C, H, W)
normalized_x = instance_norm(x)

5. 局部响应归一化 (Local Response Normalization, LRN)

(1)torch.nn.LocalResponseNorm

模仿生物神经元的抑制机制,主要在早期 CNN(如 AlexNet)中使用。

代码示例:

python 复制代码
import torch
import torch.nn as nn

lrn = nn.LocalResponseNorm(size=5)
x = torch.randn(1, 10, 8, 8)  # (N, C, H, W)
normalized_x = lrn(x)

6. 权值归一化 (Weight Normalization)

(1)torch.nn.utils.weight_norm

对权值进行归一化,常用于加速收敛。

代码示例:

python 复制代码
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm

linear = nn.Linear(10, 5)
linear = weight_norm(linear)  # 对权值进行归一化

7. 谱归一化 (Spectral Normalization)

(1)torch.nn.utils.spectral_norm

通过对权值矩阵进行奇异值分解,约束最大奇异值,常用于生成对抗网络(GAN)。

代码示例:

python 复制代码
import torch
import torch.nn as nn
from torch.nn.utils import spectral_norm

conv = nn.Conv2d(3, 16, 3)
conv = spectral_norm(conv)  # 对卷积核进行谱归一化

8. 正则化归一化

(1)梯度裁剪(Grad Clipping)

通过裁剪梯度的范数来实现归一化,主要用于防止梯度爆炸。

相关推荐
派葛穆2 分钟前
Python-批量安装依赖
开发语言·python
pchaoda3 分钟前
RSI与布林带技术指标实战
python·matplotlib·量化
哈__4 分钟前
CANN加速Image-to-Image转换:风格迁移与图像编辑优化
人工智能·计算机视觉
ujainu4 分钟前
解码昇腾AI的“中枢神经”:CANN开源仓库全景式技术解析
人工智能·开源·cann
番茄灭世神8 分钟前
Python从入门到精通 第一章
python
Elastic 中国社区官方博客9 分钟前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
组合缺一10 分钟前
Solon AI (Java) v3.9 正式发布:全能 Skill 爆发,Agent 协作更专业!仍然支持 java8!
java·人工智能·ai·llm·agent·solon·mcp
哈__11 分钟前
CANN: AI 生态的异构计算核心,从架构到实战全解析
人工智能·架构
B站_计算机毕业设计之家12 分钟前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
熊猫钓鱼>_>14 分钟前
移动端开发技术选型报告:三足鼎立时代的开发者指南(2026年2月)
android·人工智能·ios·app·鸿蒙·cpu·移动端