kafka如何获取topic一天的消息量

背景

有时候我们想要统计某个topic一天的消息量大小,在监控不完善的情况下我们可以如何统计呢?

java实现

我们可以基于kafka提供的client自己去实现

首先引入client依赖

xml 复制代码
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.5.0</version>
        </dependency>

具体实现代码

java 复制代码
    public static void main(String[] args) {
    
        String bootstrapServers = "kafka-小奏技术-001.com:9092,kafka-小奏技术-002.com:9092,kafka-小奏技术-003.com:9092";
        String topicName = "小奏技术-topic";

        Properties props = new Properties();
        props.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);

        try (AdminClient adminClient = AdminClient.create(props)) {
            long endTime = System.currentTimeMillis();
            // 24 hours ago
            long startTime = endTime - 24 * 60 * 60 * 1000; 

            // Get topic partitions
            List<TopicPartition> partitions = getTopicPartitions(adminClient, topicName);

            // Get offsets for start time
            Map<TopicPartition, Long> startOffsets = getOffsetsForTime(adminClient, partitions, startTime);

            // Get offsets for end time (current time)
            Map<TopicPartition, Long> endOffsets = getOffsetsForTime(adminClient, partitions, endTime);

            // Calculate total message count
            long totalMessages = calculateMessageCount(startOffsets, endOffsets);

            System.out.println("Total messages in the last 24 hours for topic '" + topicName + "': " + totalMessages);

        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static List<TopicPartition> getTopicPartitions(AdminClient adminClient, String topicName) throws ExecutionException, InterruptedException {
        DescribeTopicsResult describeTopicsResult = adminClient.describeTopics(Collections.singletonList(topicName));
        Map<String, TopicDescription> topicDescriptionMap = describeTopicsResult.all().get();
        TopicDescription topicDescription = topicDescriptionMap.get(topicName);

        List<TopicPartition> partitions = new ArrayList<>();
        for (TopicPartitionInfo partitionInfo : topicDescription.partitions()) {
            partitions.add(new TopicPartition(topicName, partitionInfo.partition()));
        }
        return partitions;
    }

    private static Map<TopicPartition, Long> getOffsetsForTime(AdminClient adminClient, List<TopicPartition> partitions, long timestamp) throws ExecutionException, InterruptedException {
        Map<TopicPartition, OffsetSpec> timestampsToSearch = new HashMap<>();
        for (TopicPartition partition : partitions) {
            timestampsToSearch.put(partition, OffsetSpec.forTimestamp(timestamp));
        }

        ListOffsetsResult offsetsForTimes = adminClient.listOffsets(timestampsToSearch);
        Map<TopicPartition, ListOffsetsResult.ListOffsetsResultInfo> offsetsResultMap = offsetsForTimes.all().get();

        Map<TopicPartition, Long> resultOffsets = new HashMap<>();
        for (Map.Entry<TopicPartition, ListOffsetsResult.ListOffsetsResultInfo> entry : offsetsResultMap.entrySet()) {
            resultOffsets.put(entry.getKey(), entry.getValue().offset());
        }

        return resultOffsets;
    }

    private static long calculateMessageCount(Map<TopicPartition, Long> startOffsets, Map<TopicPartition, Long> endOffsets) {
        long totalMessages = 0;
        for (TopicPartition partition : startOffsets.keySet()) {
            Long startOffset = startOffsets.get(partition);
            Long endOffset = endOffsets.get(partition);

            if (startOffset != null && endOffset != null) {
                totalMessages += endOffset - startOffset;
            }
        }
        return totalMessages;
    }

具体的实现逻辑大致如下

  1. 获取topic的所有partition
  2. 获取partition在开始时间点的offset
  3. 获取partition在结束时间点的offset
  4. 计算offset差值即为当前时间段的消息量

总结

代码实现还是比较简单的,就是获取到topic的所有partition的偏移量,然后累加就行

我们也可以基于kafka暴露的JMX指标˙中kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=([-.\w]+) 来计算

相关推荐
他日若遂凌云志13 分钟前
深入剖析 Fantasy 框架的消息设计与序列化机制:协同架构下的高效转换与场景适配
后端
快手技术29 分钟前
快手Klear-Reasoner登顶8B模型榜首,GPPO算法双效强化稳定性与探索能力!
后端
二闹38 分钟前
三个注解,到底该用哪一个?别再傻傻分不清了!
后端
用户49055816081251 小时前
当控制面更新一条 ACL 规则时,如何更新给数据面
后端
林太白1 小时前
Nuxt.js搭建一个官网如何简单
前端·javascript·后端
码事漫谈1 小时前
VS Code 终端完全指南
后端
该用户已不存在1 小时前
OpenJDK、Temurin、GraalVM...到底该装哪个?
java·后端
怀刃2 小时前
内存监控对应解决方案
后端
码事漫谈2 小时前
VS Code Copilot 内联聊天与提示词技巧指南
后端