物品识别 树莓派 5 YOLO v5 v8 v10 11 计算机视觉

0. 要实现的效果


让树莓派可以识别身边的一些物品,比如电脑,鼠标,键盘,杯子,行李箱,双肩包,床,椅子等



1. 硬件设备



2. 前置条件

  1. 给树莓派烧录好操作系统,下面我们会用现在最新的(2024年12月) bookworm
  2. VNC 连接或者用一根 HDMI 或者用官方的 raspberrypi connect

我写过一篇关于给树莓派烧录操作系统的 blog blog.csdn.net/u013633921/article/details/121433186

也有一篇 VNC 的 blog blog.csdn.net/u013633921/article/details/129677105


3. 开始!


更新一下,下面 4 个截图都好理解,不懂问问 AI


下面这条命令将安装 OpenCV 以及运行 YOLO 所需的基础设施

bash 复制代码
pip install ultralytics[export]

还会安装大量其他软件包,容易失败

如果安装失败(会显示一大片红色)

只需重新执行,已经安装过的不会再安装

我是一次过的,哈哈哈哈哈哈~(过程大概有 2 个小时 🤔)

安装后,重启树莓派

Pi 5 有物理按键,连续按两次会关机。等等再按一次,就会启动。


4. Thonny

切换到常规模式。

关闭 Thonny 再打开 Thonny。


用 Thonny 创建个文件 yolo.py

bash 复制代码
import cv2
from picamera2 import Picamera2
from ultralytics import YOLO

# Set up the camera with Picam
picam2 = Picamera2()
picam2.preview_configuration.main.size = (1280, 1280)
picam2.preview_configuration.main.format = "RGB888"
picam2.preview_configuration.align()
picam2.configure("preview")
picam2.start()

# Load YOLOv8
model = YOLO("yolov8n.pt")

while True:
    # Capture a frame from the camera
    frame = picam2.capture_array()
    
    # Run YOLO model on the captured frame and store the results
    results = model(frame)
    
    # Output the visual detection data, we will draw this on our camera preview window
    annotated_frame = results[0].plot()
    
    # Get inference time
    inference_time = results[0].speed['inference']
    fps = 1000 / inference_time  # Convert to milliseconds
    text = f'FPS: {fps:.1f}'

    # Define font and position
    font = cv2.FONT_HERSHEY_SIMPLEX
    text_size = cv2.getTextSize(text, font, 1, 2)[0]
    text_x = annotated_frame.shape[1] - text_size[0] - 10  # 10 pixels from the right
    text_y = text_size[1] + 10  # 10 pixels from the top

    # Draw the text on the annotated frame
    cv2.putText(annotated_frame, text, (text_x, text_y), font, 1, (255, 255, 255), 2, cv2.LINE_AA)

    # Display the resulting frame
    cv2.imshow("Camera", annotated_frame)

    # Exit the program if q is pressed
    if cv2.waitKey(1) == ord("q"):
        break

# Close all windows
cv2.destroyAllWindows()

点一下绿色 Run 按钮(三角),等一小会,

然后你就能看到这样的运行效果了。按 q 可以关闭。

可以改改第 7 行,第 14 行,再运行看看


喜欢或对你有帮助,点个赞吧,自己先点个嘿嘿。
有错误或者疑问还请评论指出。
我的个人网站 点击访问 hongweizhu.com

END

推荐一下我写的的 App 熊猫小账本

熊猫小账本 一个简洁的记账 App,用于记录日常消费开支收入,使用 iCloud 保存同步数据。

  • 支持备注,自定义时间偶尔忘记记账也没关系。
  • 搜索历史记账,支持分类、金额、备注。
  • 启动时需要面容/指纹验证,保护个人隐私。
  • 支持自定义分类功能,自由添加修改分类。
  • 统计图表,支出收入一目了然。
  • 每天提醒记账,不会有其他推送。
  • 桌面锁屏小组件等。

点击了解更多详情 👀

相关推荐
m0_650108241 分钟前
多模态大模型 VS. 图像视频生成模型浅析
人工智能·技术边界与协同·mllm与生成模型·技术浅谈
ai_xiaogui4 分钟前
Mac苹果版Krita AI一键安装教程:AIStarter+ComfyUI零基础部署全流程(X86/ARM双架构)
arm开发·人工智能·macos·comfyui·一键部署·ai绘画教程·kritaai
lapiii35828 分钟前
[智能体设计模式] 第11章:目标设定与监控模式
人工智能·设计模式
这张生成的图像能检测吗36 分钟前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
shayudiandian1 小时前
RNN与LSTM详解:AI是如何“记住”信息的?
人工智能·rnn·lstm
美人鱼战士爱学习1 小时前
2025 Large language models for intelligent RDF knowledge graph construction
人工智能·语言模型·知识图谱
jz_ddk1 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
qinyia1 小时前
使用Wisdom SSH的AI多会话功能进行批量命令执行和跨服务器智能运维
运维·人工智能·ssh
jay神1 小时前
【原创】基于YOLO模型的手势识别系统
深度学习·yolo·计算机·毕业设计·软件设计与开发
YisquareTech2 小时前
如何实现智能补货?EDI与ERP集成打造零售库存的“自动闭环”
大数据·人工智能·零售·伊士格科技·erp集成