Large Language Model (LLM) Tokenizers - bos_token - eos_token - unk_token

Large Language Model {LLM} Tokenizers - bos_token - eos_token - unk_token

  • [1. NVIDIA NeMo Framework](#1. NVIDIA NeMo Framework)
    • [1.1. Tokenizers](#1.1. Tokenizers)
  • [2. PyTorch Module code](#2. PyTorch Module code)
    • [2.1. `torchtune.modules.tokenizers._tiktoken`](#2.1. torchtune.modules.tokenizers._tiktoken)
  • References

1. NVIDIA NeMo Framework

https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html

NVIDIA NeMo Framework is a scalable and cloud-native generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (e.g. Automatic Speech Recognition and Text-to-Speech).

It enables users to efficiently create, customize, and deploy new generative AI models by leveraging existing code and pre-trained model checkpoints.

NeMo Framework provides end-to-end support for developing Large Language Models (LLMs) and Multimodal Models (MMs).

1.1. Tokenizers

复制代码
class nemo.collections.common.tokenizers.AutoTokenizer(
    pretrained_model_name: str,
    vocab_file: str | None = None,
    merges_file: str | None = None,
    mask_token: str | None = None,
    bos_token: str | None = None,
    eos_token: str | None = None,
    pad_token: str | None = None,
    sep_token: str | None = None,
    cls_token: str | None = None,
    unk_token: str | None = None,
    additional_special_tokens: List | None = [],
    use_fast: bool | None = False,
    trust_remote_code: bool | None = False,
)

pretrained_model_name - corresponds to HuggingFace-AutoTokenizer's 'pretrained_model_name_or_path' input argument.

vocab_file - path to file with vocabulary which consists of characters separated by newlines.

mask_token - mask token

bos_token - the beginning of sequence token

eos_token - the end of sequence token. Usually equal to sep_token

pad_token - token to use for padding

sep_token - token used for separating sequences

cls_token - class token. Usually equal to bos_token

unk_token - token to use for unknown tokens

additional_special_tokens - list of other tokens beside standard special tokens (bos, eos, pad, etc.). For example, sentinel tokens for T5 (<extra_id_0>, <extra_id_1>, etc.)

use_fast - whether to use fast HuggingFace tokenizer

2. PyTorch Module code

https://pytorch.org/torchtune/0.1/_modules/index.html

2.1. torchtune.modules.tokenizers._tiktoken

https://pytorch.org/torchtune/0.1/_modules/torchtune/modules/tokenizers/_tiktoken.html

复制代码
        path (str): Path to pretrained tokenizer checkpoint file.
        name (str): Name of the tokenizer (used by tiktoken for identification).
        pattern (str): Regex pattern used to for string parsing.
        all_special_tokens (Optional[List[str]]): List of all special tokens. 
            First element must be bos token, second element must be eos token, final element must be python tag. 
            All elements must be unique. Length must be at most 256. Default: None (will use ALL_SPECIAL_TOKENS)
        bos_token (str): Beginning of sequence token. Defaults to BEGIN_OF_TEXT.
        eos_token (str): End of sequence token. Defaults to END_OF_TEXT.
        start_header_id (str): Start header token. Defaults to START_HEADER_ID.
        end_header_id (str): End header token. Defaults to END_HEADER_ID.
        step_id (str): Step token. Defaults to STEP_ID.
        eom_id (str): End of message token. Defaults to EOM_ID.
        eot_id (str): End of turn token. Defaults to EOT_ID.
        python_tag (str): Python tag token. Defaults to PYTHON_TAG.

References

1\] Yongqiang Cheng, \[2\] How do LLMs process text data - A deep dive into Tokenization (Part-1),

相关推荐
G.E.N.41 分钟前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
AI大模型2 小时前
COZE实战部署(四)—— coze实战部署
程序员·llm·coze
AI大模型2 小时前
COZE实战部署(三)—— 更多实例的展示
llm·agent·coze
阿里云大数据AI技术16 小时前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
大模型开发17 小时前
零基础打造AI智能体实战教学(10)----零基础用Coze打造短视频自动洗稿工作流
llm·agent·coze
商汤万象开发者18 小时前
懒懒笔记 | 课代表带你梳理【RAG课程 19:基于知识图谱的RAG】
llm
字节跳动视频云技术团队20 小时前
ICME 2025 | 火山引擎在国际音频编码能力挑战赛中夺得冠军
llm·aigc·音视频开发
AI大模型20 小时前
COZE实战部署(二)—— 创建Coze应用
程序员·llm·coze
聚客AI20 小时前
大模型学习进阶路线图:从Prompt到预训练的四阶段全景解析
人工智能·llm·掘金·日新计划
大模型开发20 小时前
零基础打造AI智能体实战教学(9)----把Coze AI助手部署到Discord频道教程
llm·agent·coze