Large Language Model (LLM) Tokenizers - bos_token - eos_token - unk_token

Large Language Model {LLM} Tokenizers - bos_token - eos_token - unk_token

  • [1. NVIDIA NeMo Framework](#1. NVIDIA NeMo Framework)
    • [1.1. Tokenizers](#1.1. Tokenizers)
  • [2. PyTorch Module code](#2. PyTorch Module code)
    • [2.1. `torchtune.modules.tokenizers._tiktoken`](#2.1. torchtune.modules.tokenizers._tiktoken)
  • References

1. NVIDIA NeMo Framework

https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html

NVIDIA NeMo Framework is a scalable and cloud-native generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (e.g. Automatic Speech Recognition and Text-to-Speech).

It enables users to efficiently create, customize, and deploy new generative AI models by leveraging existing code and pre-trained model checkpoints.

NeMo Framework provides end-to-end support for developing Large Language Models (LLMs) and Multimodal Models (MMs).

1.1. Tokenizers

class nemo.collections.common.tokenizers.AutoTokenizer(
    pretrained_model_name: str,
    vocab_file: str | None = None,
    merges_file: str | None = None,
    mask_token: str | None = None,
    bos_token: str | None = None,
    eos_token: str | None = None,
    pad_token: str | None = None,
    sep_token: str | None = None,
    cls_token: str | None = None,
    unk_token: str | None = None,
    additional_special_tokens: List | None = [],
    use_fast: bool | None = False,
    trust_remote_code: bool | None = False,
)

pretrained_model_name - corresponds to HuggingFace-AutoTokenizer's 'pretrained_model_name_or_path' input argument.

vocab_file - path to file with vocabulary which consists of characters separated by newlines.

mask_token - mask token

bos_token - the beginning of sequence token

eos_token - the end of sequence token. Usually equal to sep_token

pad_token - token to use for padding

sep_token - token used for separating sequences

cls_token - class token. Usually equal to bos_token

unk_token - token to use for unknown tokens

additional_special_tokens - list of other tokens beside standard special tokens (bos, eos, pad, etc.). For example, sentinel tokens for T5 (<extra_id_0>, <extra_id_1>, etc.)

use_fast - whether to use fast HuggingFace tokenizer

2. PyTorch Module code

https://pytorch.org/torchtune/0.1/_modules/index.html

2.1. torchtune.modules.tokenizers._tiktoken

https://pytorch.org/torchtune/0.1/_modules/torchtune/modules/tokenizers/_tiktoken.html

        path (str): Path to pretrained tokenizer checkpoint file.
        name (str): Name of the tokenizer (used by tiktoken for identification).
        pattern (str): Regex pattern used to for string parsing.
        all_special_tokens (Optional[List[str]]): List of all special tokens. 
            First element must be bos token, second element must be eos token, final element must be python tag. 
            All elements must be unique. Length must be at most 256. Default: None (will use ALL_SPECIAL_TOKENS)
        bos_token (str): Beginning of sequence token. Defaults to BEGIN_OF_TEXT.
        eos_token (str): End of sequence token. Defaults to END_OF_TEXT.
        start_header_id (str): Start header token. Defaults to START_HEADER_ID.
        end_header_id (str): End header token. Defaults to END_HEADER_ID.
        step_id (str): Step token. Defaults to STEP_ID.
        eom_id (str): End of message token. Defaults to EOM_ID.
        eot_id (str): End of turn token. Defaults to EOT_ID.
        python_tag (str): Python tag token. Defaults to PYTHON_TAG.

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

[2] How do LLMs process text data - A deep dive into Tokenization (Part-1), https://gdevakumar.medium.com/how-do-llms-process-text-data-a-deep-dive-into-tokenization-part-1-342bd365c6dc

相关推荐
新智元3 小时前
李飞飞谢赛宁:多模态 LLM「空间大脑」觉醒,惊现世界模型雏形!
人工智能·llm
RWKV元始智能8 小时前
RWKV-7:极先进的大模型架构,长文本能力极强
人工智能·llm
zaim11 天前
计算机的错误计算(一百八十七)
人工智能·ai·大模型·llm·错误·正弦/sin·误差/error
张拭心1 天前
Google 提供的 Android 端上大模型组件:MediaPipe LLM 介绍
android·人工智能·llm
带电的小王1 天前
whisper.cpp: Android端测试 -- Android端手机部署音频大模型
android·智能手机·llm·whisper·音频大模型·whisper.cpp
带电的小王1 天前
whisper.cpp: PC端测试 -- 电脑端部署音频大模型
llm·whisper·音视频·音频大模型
Ambition_LAO2 天前
LLaMA-Factory QuickStart 流程详解
llm·llama
宇梵文书C2 天前
在CFFF云平台使用llama-factory部署及微调Qwen2.5-7B-Instruct
llm·llama·cfff
zaim12 天前
计算机的错误计算(一百八十六)
人工智能·python·ai·大模型·llm·误差·decimal
带电的小王2 天前
llama.cpp:PC端测试 MobileVLM -- 电脑端部署图生文大模型
llm·llama.cpp·vlm·mobilevlm·图生文