大模型面试题:当Batch Size增大时,学习率该如何随之变化?

我整理了1000道算法面试题

获取

该问题大答案的理论分析请参考苏剑林的科学空间,地址位于 https://kexue.fm/archives/10542

说下结论:从方差的角度来分析,有两个角度来说明学习率应该和Batch size的关系,一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍,另一个角度是呈现线性的关系,也即Batch size增大x倍,学习率增大x倍。从损失的角度来分析,学习率随着Batch Size的增加而单调递增但有上界。

  • 方差角度
  1. 作者明确了自2014年的《One weird trick for parallelizing convolutional neural networks》,该论文的推导原理是让SGD增量的方差保持不变。若干个推导明确了通过调整学习率η 让增量的噪声强度即协方差矩阵保持不变,得到了一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍。

  2. 作者明确了在实践中,Batch size增大x倍且学习率增大根号x倍的表现最好,中间涉及了一些推导,主要是基于梯度的噪声是正态分布的假设开始。

  • 损失角度
  1. 作者说了经典工作是OpenAI的《An Empirical Model of Large-Batch Training》,它通过损失函数的二阶近似来分析SGD的最优学习率,得出"学习率随着Batch Size的增加而单调递增但有上界"的结论。整个推导过程值将学习率也作为待优化的参数写进到损失函数L里面去,然后通过二阶泰勒展开得到n_max,也就是学习率最大的表达式,,可以看到B越大的话,学习率也可以越大,但是最后会饱和。
  • 其它
  1. 实际在训练过程中,先通过海塞矩阵和梯度得到,然后通过小批量的数据得到,然后结合B得到。

  2. 表明数据量越小,那么应该缩小Batch Size,让训练步数更多,才能更有机会达到更优的解。

  • 大模型

    简单说,openai发现,用大batch size配合大的learning rate,和用小batch size和小learning rate最终到达的效果是一样的。当然,后面他们也一直都是这样实践的。

参考

1\] https://kexue.fm/archives/10542

相关推荐
低保和光头哪个先来4 分钟前
场景6:对浏览器内核的理解
开发语言·前端·javascript·vue.js·前端框架
小北方城市网7 分钟前
Python + 前后端全栈进阶课程(共 10 节|完整版递进式|从技术深化→项目落地→就业进阶,无缝衔接基础课)
大数据·开发语言·网络·python·数据库架构
程序员JerrySUN12 分钟前
OP-TEE + YOLOv8:从“加密权重”到“内存中解密并推理”的完整实战记录
android·java·开发语言·redis·yolo·架构
阿里嘎多学长23 分钟前
2025-12-30 GitHub 热点项目精选
开发语言·程序员·github·代码托管
BullSmall26 分钟前
Doris的备份及恢复方案
学习
小李子不吃李子31 分钟前
人工智能与创新第二章练习题
人工智能·学习
郝学胜-神的一滴40 分钟前
Linux进程与线程控制原语对比:双刃出鞘,各显锋芒
linux·服务器·开发语言·数据结构·c++·程序人生
小钟不想敲代码1 小时前
Python(一)
开发语言·python
ji_shuke1 小时前
canvas绘制拖拽箭头
开发语言·javascript·ecmascript
qq_336313931 小时前
java基础-IO流(缓冲流)
java·开发语言