大模型面试题:当Batch Size增大时,学习率该如何随之变化?

我整理了1000道算法面试题

获取

该问题大答案的理论分析请参考苏剑林的科学空间,地址位于 https://kexue.fm/archives/10542

说下结论:从方差的角度来分析,有两个角度来说明学习率应该和Batch size的关系,一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍,另一个角度是呈现线性的关系,也即Batch size增大x倍,学习率增大x倍。从损失的角度来分析,学习率随着Batch Size的增加而单调递增但有上界。

  • 方差角度
  1. 作者明确了自2014年的《One weird trick for parallelizing convolutional neural networks》,该论文的推导原理是让SGD增量的方差保持不变。若干个推导明确了通过调整学习率η 让增量的噪声强度即协方差矩阵保持不变,得到了一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍。

  2. 作者明确了在实践中,Batch size增大x倍且学习率增大根号x倍的表现最好,中间涉及了一些推导,主要是基于梯度的噪声是正态分布的假设开始。

  • 损失角度
  1. 作者说了经典工作是OpenAI的《An Empirical Model of Large-Batch Training》,它通过损失函数的二阶近似来分析SGD的最优学习率,得出"学习率随着Batch Size的增加而单调递增但有上界"的结论。整个推导过程值将学习率也作为待优化的参数写进到损失函数L里面去,然后通过二阶泰勒展开得到n_max,也就是学习率最大的表达式,,可以看到B越大的话,学习率也可以越大,但是最后会饱和。
  • 其它
  1. 实际在训练过程中,先通过海塞矩阵和梯度得到,然后通过小批量的数据得到,然后结合B得到。

  2. 表明数据量越小,那么应该缩小Batch Size,让训练步数更多,才能更有机会达到更优的解。

  • 大模型

    简单说,openai发现,用大batch size配合大的learning rate,和用小batch size和小learning rate最终到达的效果是一样的。当然,后面他们也一直都是这样实践的。

参考

[1] https://kexue.fm/archives/10542

相关推荐
life_time_2 小时前
C语言(22)
c语言·开发语言
Minner-Scrapy2 小时前
DApp 开发入门指南
开发语言·python·web app
孤雪心殇3 小时前
简单易懂,解析Go语言中的Map
开发语言·数据结构·后端·golang·go
庸俗今天不摸鱼3 小时前
Canvas进阶-4、边界检测(流光,鼠标拖尾)
开发语言·前端·javascript·计算机外设
菠菠萝宝3 小时前
【Java八股文】10-数据结构与算法面试篇
java·开发语言·面试·红黑树·跳表·排序·lru
奔跑吧邓邓子3 小时前
【Python爬虫(36)】深挖多进程爬虫性能优化:从通信到负载均衡
开发语言·爬虫·python·性能优化·负载均衡·多进程
不会Hello World的小苗3 小时前
Java——链表(LinkedList)
java·开发语言·链表
陈无左耳、3 小时前
HarmonyOS学习第3天: 环境搭建开启鸿蒙开发新世界
学习·华为·harmonyos
lsx2024063 小时前
Perl 面向对象编程指南
开发语言