大模型面试题:当Batch Size增大时,学习率该如何随之变化?

我整理了1000道算法面试题

获取

该问题大答案的理论分析请参考苏剑林的科学空间,地址位于 https://kexue.fm/archives/10542

说下结论:从方差的角度来分析,有两个角度来说明学习率应该和Batch size的关系,一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍,另一个角度是呈现线性的关系,也即Batch size增大x倍,学习率增大x倍。从损失的角度来分析,学习率随着Batch Size的增加而单调递增但有上界。

  • 方差角度
  1. 作者明确了自2014年的《One weird trick for parallelizing convolutional neural networks》,该论文的推导原理是让SGD增量的方差保持不变。若干个推导明确了通过调整学习率η 让增量的噪声强度即协方差矩阵保持不变,得到了一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍。

  2. 作者明确了在实践中,Batch size增大x倍且学习率增大根号x倍的表现最好,中间涉及了一些推导,主要是基于梯度的噪声是正态分布的假设开始。

  • 损失角度
  1. 作者说了经典工作是OpenAI的《An Empirical Model of Large-Batch Training》,它通过损失函数的二阶近似来分析SGD的最优学习率,得出"学习率随着Batch Size的增加而单调递增但有上界"的结论。整个推导过程值将学习率也作为待优化的参数写进到损失函数L里面去,然后通过二阶泰勒展开得到n_max,也就是学习率最大的表达式,,可以看到B越大的话,学习率也可以越大,但是最后会饱和。
  • 其它
  1. 实际在训练过程中,先通过海塞矩阵和梯度得到,然后通过小批量的数据得到,然后结合B得到。

  2. 表明数据量越小,那么应该缩小Batch Size,让训练步数更多,才能更有机会达到更优的解。

  • 大模型

    简单说,openai发现,用大batch size配合大的learning rate,和用小batch size和小learning rate最终到达的效果是一样的。当然,后面他们也一直都是这样实践的。

参考

1\] https://kexue.fm/archives/10542

相关推荐
菜的不敢吱声14 小时前
swift学习第4天
服务器·学习·swift
你怎么知道我是队长17 小时前
C语言---枚举变量
c语言·开发语言
李慕婉学姐17 小时前
【开题答辩过程】以《基于JAVA的校园即时配送系统的设计与实现》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
java·开发语言·数据库
吃茄子的猫17 小时前
quecpython中&的具体含义和使用场景
开发语言·python
云栖梦泽17 小时前
易语言中小微企业Windows桌面端IoT监控与控制
开发语言
想进部的张同学17 小时前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
数据大魔方17 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
HyperAI超神经18 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
Edward.W19 小时前
Python uv:新一代Python包管理工具,彻底改变开发体验
开发语言·python·uv
小熊officer19 小时前
Python字符串
开发语言·数据库·python