使用 SemanticKernel 对接 Ollma

前面的 2 篇文章已经介绍了 ollama 的基本情况。我们也已经能在本地跟 LLM 进行聊天了。但是如何使用代码跟 LLM 进行交互呢?如果是 C# 选手那自然是使用 SK (SemanticKernel) 了。在这篇博客中,我们将探讨如何使用 Microsoft 的 SemanticKernel 框架对接 Ollama 的聊天服务。我们将通过一个简单的 C# 控制台应用程序来展示如何实现这一点。

前提条件

在本地安装 ollama 服务,并且安装至少一个模型,这次我们的模型是 llama3.1:8b。具体如何安装就不赘述了,请参考以往文章:

安装 SK 及 ollama connector

首先在本地创建一个 Console 项目,然后安装以下包:

dotnet add package Microsoft.SemanticKernel --version 1.21.1
dotnet add package Microsoft.SemanticKernel.Connectors.Ollama --version 1.21.1-alpha

注意:ollama connector 还是 alpha 版本,请勿用于生产

修改 Program 文件

添加命名空间

首先,我们需要引入一些必要的命名空间:

using Microsoft.Extensions.DependencyInjection;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.Ollama;

配置 Ollama 服务

接下来,我们需要配置 Ollama 服务的端点和模型 ID ,并添加 Ollama 的聊天服务:

var endpoint = new Uri("http://localhost:11434");
var modelId = "llama3.1:8b";

var builder = Kernel.CreateBuilder();
#pragma warning disable SKEXP0070 
builder.Services.AddScoped<IChatCompletionService>(_ => new OllamaChatCompletionService(modelId, endpoint));

注意:OllamaChatCompletionService 为实验性质所以我们需求手工关闭 SKEXP0070 的警告

获取聊天服务

var chatService = kernel.GetRequiredService<IChatCompletionService>();
var history = new ChatHistory();
history.AddSystemMessage("This is a llama3 assistant ...");

聊天循环

最后,我们实现一个简单的聊天循环,读取用户输入并获取 Ollama 的回复:

while (true)
{
    Console.Write("You:");

    var input = Console.ReadLine();

    if (string.IsNullOrWhiteSpace(input))
    {
        break;
    }

    history.AddUserMessage(input);

    var contents = await chatService.GetChatMessageContentsAsync(history);

    foreach (var chatMessageContent in contents)
    {
        var content = chatMessageContent.Content;
        Console.WriteLine($"Ollama: {content}");
        history.AddMessage(chatMessageContent.Role, content ?? "");
    }
}

试一下

让我们运行项目在 Console 中跟 ollama 进行对话吧。

总结

通过这篇博客,我们展示了如何使用 Microsoft 的 SemanticKernel 框架对接 Ollama 的聊天服务。希望这篇博客能帮助您更好地理解和使用这些工具。如果您有任何问题或建议,请随时在评论区留言。

关注我的公众号一起玩转技术

相关推荐
玄明Hanko4 小时前
豆包MarsCode:可以在线用的智能AI编程助手
人工智能·ai·字节·marscode
搬砖的小码农_Sky4 小时前
芯片:英伟达GPU的并行计算能力是如何实现的?
人工智能·gpt·ai·gpu算力
冻感糕人~11 小时前
使用LangChain、CrewAI、AutoGen搭建数据分析Agent
人工智能·windows·ai·数据分析·langchain·大模型·agent
Agile.Zhou13 小时前
Kernel Memory 让 SK 记住更多内容
sk
凡人的AI工具箱17 小时前
每日学习30分轻松掌握CursorAI:Cursor基础设置与配置
python·学习·ai·aigc·ai编程·cursor
hellocode_1 天前
如何评价deepseek-V3 VS OpenAI o1 自然语言处理成Sql的能力
人工智能·gpt·ai·chatgpt
12点一刻1 天前
怎么理解编码器与解码器?
gpt·ai·编码器·解码器
昱感_sensemi1 天前
“多维像素”多模态雷视融合技术构建自动驾驶超级感知能力|上海昱感微电子创始人蒋宏GADS演讲预告
人工智能·机器学习·ai·机器人·自动驾驶
Elastic 中国社区官方博客2 天前
Elasticsearch:优化的标量量化 - 更好的二进制量化
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·lucene
AWM巴卡2 天前
如何稳定使用 O1 / O1 Pro,让“降智”现象不再困扰?
python·gpt·ai·chatgpt·软件工程·o1 pro