电子商务人工智能指南 1/6 - 搜索、广告和发现

介绍

81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局*。* 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一种选择,而是零售商推动规模增长和保持市场差异化的必要条件。电子商务公司现在正在使用 AI 来创建新的客户参与形式,增强在线结账解决方案,并推动数字商务的经济高效流程。

本指南将全面概述人工智能在电子商务公司的主要应用,并分享 Scale 在零售领域的经验最佳实践。

电子商务人工智能:为什么它很重要?

人工智能对电子商务有多种益处:

增强客户体验: 电子商务的 AI 解决方案可以帮助公司个性化产品推荐、改善搜索结果并更好地了解客户情绪。借助准确的个性化和推荐机器学习模型,公司可以帮助减少购买时间、在产品详细信息页面上准确描述产品并更好地了解客户行为。通过投资准确的 ML 模型,团队可以实现提高购物转化率和提高客户满意度的目标。此外,电子商务公司可以通过删除违反平台准则的内容(从用户生成的内容到商家特定数据)来提高信任度和安全性。

最大化盈利能力: ML 模型可以帮助根据购物和浏览历史提供准确且有针对性的产品推荐,并细分客户分析以提供更准确的广告。通过使用 AI 丰富内容元数据,团队可以更好地了解内容和产品格局。这使电子商务公司能够更好地专注于产品和内容增长工作,并尽早缩小趋势范围。

加速运营流程: 购物和内容趋势瞬息万变,而手动操作流程却过于缓慢。加速新商家入职、需求预测和内容优化等运营流程。人机交互等技术可以增强机器学习模型,使其达到人类水平的准确性和质量。

现有的没有人工智能的流程无法满足消费者不断变化的需求。电子商务市场面临三大挑战:

  1. 成本和投资呈指数级增长: 仅使用内部运营团队来管理电子商务数据和激活新产品通常会抑制增长。手动操作来获取、清理和丰富数据非常耗时。生成新产品资产(例如产品描述和产品摄影)的成本很高。
  2. 缺乏属性数据: 个性化系统受限于稀疏的属性数据。产品数据可能包含不正确的信息、重复项和缺失的属性,导致搜索和产品推荐效果不佳。用户行为内容元数据不够详细,导致内容推荐系统存在缺陷。
  3. 手动流程太慢: 消费者行为和内容趋势变化很快。当前系统需要太多时间和流程来发现和展示热门内容,平台在保持客户参与度和转化率方面落后。

在本指南中,我们将解释帮助解决这些挑战的主要用例,并提供帮助您利用 AI 发展业务的路线图。

电子商务中的人工智能:主要用例

电子商务中人工智能有许多不同的应用。在本指南中,我们将重点介绍电子商务中以数据为中心的应用程序的六个主要类别:

  1. 搜索、广告和发现
  2. 需求预测和库存管理
  3. 聊天机器人和客户服务
  4. 内容理解
  5. 丰富的产品数据
  6. 人工智能生成的产品图像

搜索、广告和发现

良好的客户体验始于高度个性化的推荐、有针对性的产品优惠和搜索相关性。人工智能的个性化推荐主要有三种用例:

搜索相关性和商品发现: 49% 的在线购物者 会跳过第一页来寻找他们想要的东西。搜索和商品发现是改善客户购物体验和帮助客户找到合适产品的关键要素。人工智能搜索引擎使用自然语言处理 (NLP) 来处理和理解查询。然后,搜索引擎使用该含义来呈现最佳排名的搜索结果。借助人工智能搜索相关性,电子商务团队可以更好地理解搜索词背后的真实意图,并为客户提供最相关的结果。

广告和优惠推荐:根据搜索、浏览、添加到购物车和购买历史记录,零售商可以提供有针对性的广告和优惠。零售商可以使用机器学习来捕获客户数据、综合见解并提供个性化的购物体验。机器学习推荐系统使用推荐功能,该功能获取有关用户的信息(包括他们的浏览和购买历史记录),并预测用户将为给定产品给出的评分。更好的增强数据可以帮助品牌向客户提供广告和优惠。有针对性的广告有助于吸引新客户,并帮助重新吸引可能已经放弃购物车的客户。

产品推荐:对于希望提高产品销量的商业团队来说,产品推荐是提高投资回报率的关键。ML 模型会分析购买历史并构建相似的客户受众,以提供个性化的产品推荐。例如,ML 模型可以为类似产品、经常一起购买的产品或从相似受众那里购买的产品提供推荐。产品推荐通过鼓励重复购买和提高平均订单价值来为零售商增加价值。

ApiSmart

ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copilothttps://apihug.com/zhCN-docs/copilot

ApiSmart 已经支持18家大模型供应商,n+大模型接入(本地环境可无限多模型);

  1. OpenAi

  2. Azure

  3. Gemini

  4. Anthropic

  5. DeepInfra

  6. Mooshot

  7. Zhipu

  8. DeepSeek

  9. Qianfan

  10. Grop

  11. Ollama

  12. Mistral

  13. LMStudio

  14. OpenRouter

  15. Jan

  16. GPT4All

  17. 通义-阿里

  18. 混元-腾讯

ApiHug - API Design & Develop New Paradigm.ApiHug - API Design & Develop New Paradigm.https://apihug.com/ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copilot

相关推荐
励志要当大牛的小白菜12 分钟前
ART配对软件使用
开发语言·c++·qt·算法
白-胖-子38 分钟前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
武子康1 小时前
Java-80 深入浅出 RPC Dubbo 动态服务降级:从雪崩防护到配置中心秒级生效
java·分布式·后端·spring·微服务·rpc·dubbo
想要成为计算机高手2 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
爱装代码的小瓶子2 小时前
数据结构之队列(C语言)
c语言·开发语言·数据结构
静心问道3 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.03 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12013 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师4 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen4 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习