去除分叉轮廓

去除分叉轮廓

思路来源于https://blog.csdn.net/weixin_39639550/article/details/111624935,但是使用不同的方法进行实现,实际测试发现仅对特定轮廓有效,不具有通用性,仅供参考。

示例代码

python 复制代码
import numpy as np
import cv2
from copy import deepcopy

def get_contour_remove_fork(mask_path):
    mask = cv2.imread(mask_path, 0)
    # 找到轮廓
    contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    mask_convex = deepcopy(mask)
    # 遍历所有轮廓
    for contour in contours:
        # 计算轮廓的凸包
        hull = cv2.convexHull(contour)

        # 可以选择绘制凸包
        mask_convex = cv2.drawContours(
            mask_convex, [hull], -1, 
            255, -1
        )
    
    mask_convex_remove_raw_contour = deepcopy(mask_convex)
    mask_convex_remove_raw_contour[mask == 255] = 0
    # 腐蚀
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    mask_convex_remove_raw_contour = cv2.erode(
        mask_convex_remove_raw_contour, 
        kernel, iterations=1
    )
    # # 获取最大的轮廓
    contours, _ = cv2.findContours(
        mask_convex_remove_raw_contour, 
        cv2.RETR_EXTERNAL, 
        cv2.CHAIN_APPROX_SIMPLE
    )
    # print(len(contours))
    
    max_contour = max(contours, key=cv2.contourArea)
    # 获取最大轮廓

    # 绘制最大的轮廓
    mask_convex_remove_raw_contour_max_contour = cv2.drawContours(
        np.zeros_like(mask_convex_remove_raw_contour), 
        [max_contour], 
        -1, 
        255, 
        -1
    )

    # 膨胀
    kernel_size = 20
    kernel = cv2.getStructuringElement(
        cv2.MORPH_RECT, (kernel_size, kernel_size)
    )
    mask_convex_remove_raw_contour_dilate = cv2.dilate(
        mask_convex_remove_raw_contour_max_contour, 
        kernel, iterations=1
    )

    # 与原图取交集
    mask_dst = cv2.bitwise_and(mask, mask_convex_remove_raw_contour_dilate)
    return mask_dst
if __name__ == '__main__':
    mask_path = "./test.png"
    mask_remove_fork = get_contour_remove_fork(mask_path)
    mask_remove_fork_path = ".test_remove_fork.png"
    cv2.imwrite(mask_remove_fork_path, mask_remove_fork)

相关图示例

原图

凸包后对原图非零像素对应位置取0

最终效果图

相关推荐
昵称是6硬币3 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
云天徽上9 天前
【目标检测】图像处理基础:像素、分辨率与图像格式解析
图像处理·人工智能·目标检测·计算机视觉·数据可视化
LabVIEW开发9 天前
LabVIEW液位上升图像识别 附件有源码
计算机视觉·labview知识
Echo``9 天前
12.OpenCV—基础入门
开发语言·c++·人工智能·qt·opencv·计算机视觉
jndingxin9 天前
OpenCV CUDA模块设备层-----线程块内初始化连续内存区域 的设备端工具函数blockYota()
人工智能·opencv·计算机视觉
AI technophile9 天前
OpenCV计算机视觉实战(12)——图像金字塔与特征缩放
人工智能·opencv·计算机视觉
无证驾驶梁嗖嗖9 天前
[特殊字符] OpenCV opencv_world 模块作用及编译实践完整指南
opencv
justtoomuchforyou9 天前
PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection
人工智能·目标检测·计算机视觉·智驾
拾忆-eleven10 天前
UNet改进(5):线性注意力机制(Linear Attention)-原理详解与代码实现
人工智能·计算机视觉
马里马里奥-10 天前
深度学习和计算机视觉的关系的理解
人工智能·深度学习·计算机视觉