使用pyspark完成wordcount案例

本地运行+本地数据

复制代码
import os
import re

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
"""
数据在本地
代码在本地
使用的是windows的资源

"""

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    conf = SparkConf().setMaster("local[*]").setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile("../data/wordcount/input")
    # split 默认是切空格的 假如是多个空格可以识别么
    fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: line.strip().split()).map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("../data/wordcount/output3")

    # fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: re.split("\s+",line.strip()) ).map(lambda word: (word, 1)) \
    #     .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("../data/wordcount/output2")
    sc.stop()

本地运行+集群数据

复制代码
import os
import re

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
"""
数据在hdfs
代码在本地
资源使用的是windows的

"""

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'
    os.environ['HADOOP_USER_NAME'] = 'root'

    conf = SparkConf().setMaster("local[*]").setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile("hdfs://bigdata01:9820/spark/wordcount/input")

    fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: re.split("\s+",line.strip()) ).map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("hdfs://bigdata01:9820/spark/wordcount/output2")
    sc.stop()

外部传参+服务器模式

复制代码
import os
import re
import sys

from pyspark.conf import SparkConf
from pyspark.context import SparkContext

"""
数据在hdfs
代码在本地
资源使用的是windows的

"""

if __name__ == '__main__':
    inputPath = sys.argv[1]
    outputPath = sys.argv[2]
    # 配置环境
    os.environ['JAVA_HOME'] = '/opt/installs/jdk'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = '/opt/installs/hadoop'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = '/opt/installs/anaconda3/bin/python3'  # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = '/opt/installs/anaconda3/bin/python3'

    conf = SparkConf().setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile(inputPath)

    fileRdd \
        .filter(lambda line: len(line) > 0) \
        .flatMap(lambda line: re.split("\s+", line.strip())) \
        .map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp) \
        .saveAsTextFile(outputPath)

    sc.stop()
相关推荐
Java 码农17 分钟前
Centos7 maven 安装
java·python·centos·maven
异次元的星星40 分钟前
智慧新零售时代:施易德系统平衡技术与人力,赋能门店运营
大数据·零售
Lucis__1 小时前
再探类&对象——C++入门进阶
开发语言·c++
007php0071 小时前
某大厂跳动面试:计算机网络相关问题解析与总结
java·开发语言·学习·计算机网络·mysql·面试·职场和发展
倔强青铜三1 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
知识分享小能手1 小时前
微信小程序入门学习教程,从入门到精通,微信小程序核心 API 详解与案例(13)
前端·javascript·学习·react.js·微信小程序·小程序·vue
递归不收敛1 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
浔川python社1 小时前
《网络爬虫技术规范与应用指南系列》(xc—3):合规实操与场景落地
python
B站计算机毕业设计之家1 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
lsx2024061 小时前
HTML 字符集
开发语言