使用pyspark完成wordcount案例

本地运行+本地数据

复制代码
import os
import re

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
"""
数据在本地
代码在本地
使用的是windows的资源

"""

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    conf = SparkConf().setMaster("local[*]").setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile("../data/wordcount/input")
    # split 默认是切空格的 假如是多个空格可以识别么
    fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: line.strip().split()).map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("../data/wordcount/output3")

    # fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: re.split("\s+",line.strip()) ).map(lambda word: (word, 1)) \
    #     .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("../data/wordcount/output2")
    sc.stop()

本地运行+集群数据

复制代码
import os
import re

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
"""
数据在hdfs
代码在本地
资源使用的是windows的

"""

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'
    os.environ['HADOOP_USER_NAME'] = 'root'

    conf = SparkConf().setMaster("local[*]").setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile("hdfs://bigdata01:9820/spark/wordcount/input")

    fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: re.split("\s+",line.strip()) ).map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("hdfs://bigdata01:9820/spark/wordcount/output2")
    sc.stop()

外部传参+服务器模式

复制代码
import os
import re
import sys

from pyspark.conf import SparkConf
from pyspark.context import SparkContext

"""
数据在hdfs
代码在本地
资源使用的是windows的

"""

if __name__ == '__main__':
    inputPath = sys.argv[1]
    outputPath = sys.argv[2]
    # 配置环境
    os.environ['JAVA_HOME'] = '/opt/installs/jdk'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = '/opt/installs/hadoop'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = '/opt/installs/anaconda3/bin/python3'  # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = '/opt/installs/anaconda3/bin/python3'

    conf = SparkConf().setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile(inputPath)

    fileRdd \
        .filter(lambda line: len(line) > 0) \
        .flatMap(lambda line: re.split("\s+", line.strip())) \
        .map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp) \
        .saveAsTextFile(outputPath)

    sc.stop()
相关推荐
三只熊猫6 分钟前
一文打通 AI 知识脉络:大语言模型等关键内容详解
人工智能·python
Kyln.Wu14 分钟前
【python实用小脚本-187】Python一键批量改PDF文字:拖进来秒出新文件——再也不用Acrobat来回导
python·pdf·c#
hqwest29 分钟前
C#WPF实战出真汁01--项目介绍
开发语言·c#·wpf
xnglan1 小时前
蓝桥杯手算题和杂题简易做法
数据结构·数据库·c++·python·算法·职场和发展·蓝桥杯
诗书画唱1 小时前
我的学习认知、高效方法与知识积累笔记
笔记·学习
小大力1 小时前
简单的 HTTPS 学习
网络协议·学习·https
姓刘的哦1 小时前
Win10上Qt使用Libcurl库
开发语言·qt
檀越剑指大厂1 小时前
【开发语言】Groovy语言:Java生态中的动态力量
java·开发语言
stbomei1 小时前
C 语言判断一个数是否是素数的三种方法文章提纲
c语言·开发语言·算法
小牛壮士1 小时前
Tokenizer(切词器)的不同实现算法
开发语言·算法·c#