使用pyspark完成wordcount案例

本地运行+本地数据

复制代码
import os
import re

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
"""
数据在本地
代码在本地
使用的是windows的资源

"""

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    conf = SparkConf().setMaster("local[*]").setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile("../data/wordcount/input")
    # split 默认是切空格的 假如是多个空格可以识别么
    fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: line.strip().split()).map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("../data/wordcount/output3")

    # fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: re.split("\s+",line.strip()) ).map(lambda word: (word, 1)) \
    #     .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("../data/wordcount/output2")
    sc.stop()

本地运行+集群数据

复制代码
import os
import re

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
"""
数据在hdfs
代码在本地
资源使用的是windows的

"""

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'
    os.environ['HADOOP_USER_NAME'] = 'root'

    conf = SparkConf().setMaster("local[*]").setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile("hdfs://bigdata01:9820/spark/wordcount/input")

    fileRdd.filter(lambda line: len(line) > 0).flatMap(lambda line: re.split("\s+",line.strip()) ).map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp).saveAsTextFile("hdfs://bigdata01:9820/spark/wordcount/output2")
    sc.stop()

外部传参+服务器模式

复制代码
import os
import re
import sys

from pyspark.conf import SparkConf
from pyspark.context import SparkContext

"""
数据在hdfs
代码在本地
资源使用的是windows的

"""

if __name__ == '__main__':
    inputPath = sys.argv[1]
    outputPath = sys.argv[2]
    # 配置环境
    os.environ['JAVA_HOME'] = '/opt/installs/jdk'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = '/opt/installs/hadoop'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = '/opt/installs/anaconda3/bin/python3'  # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = '/opt/installs/anaconda3/bin/python3'

    conf = SparkConf().setAppName("第一个spark项目")
    sc = SparkContext(conf=conf)
    fileRdd = sc.textFile(inputPath)

    fileRdd \
        .filter(lambda line: len(line) > 0) \
        .flatMap(lambda line: re.split("\s+", line.strip())) \
        .map(lambda word: (word, 1)) \
        .reduceByKey(lambda sum, tmp: sum + tmp) \
        .saveAsTextFile(outputPath)

    sc.stop()
相关推荐
AI小云3 分钟前
【Numpy数据运算】Numpy速学手册
python·numpy
武子康18 分钟前
Java-170 Neo4j 事务、索引与约束实战:语法、并发陷阱与速修清单
java·开发语言·数据库·sql·nosql·neo4j·索引
7澄140 分钟前
Java 实战:投票统计系统(HashMap 应用)
java·开发语言·intellij-idea·交互·控制台·hashmap
zzzsde41 分钟前
【C++】红黑树:使用及实现
开发语言·c++·算法
点云SLAM1 小时前
C++ 中的栈(Stack)数据结构与堆的区别与内存布局(Stack vs Heap)
开发语言·数据结构·c++·内存布局·栈数据结构·c++标准算法·heap内存分配
枫子有风1 小时前
【go.sixue.work】2.2 面向对象:接口与多态
开发语言·后端·golang·xcode
虫洞没有虫1 小时前
Go语言学习笔记(二)
笔记·学习
AA陈超1 小时前
ASC学习笔记0001:处理目标选择系统中当Actor拒绝目标确认时的调用
c++·笔记·学习·游戏·ue5·游戏引擎·虚幻
正在走向自律1 小时前
大数据时代时序数据库选型指南:从技术架构到实战案例
大数据·架构·时序数据库
攻城狮7号1 小时前
万物互联时代,如何选择合适的时序数据库?
大数据·物联网·时序数据库·apache iotdb·sql mcp