【机器学习】机器学习的基本分类-监督学习-梯度提升树(Gradient Boosting Decision Tree, GBDT)

梯度提升树是一种基于**梯度提升(Gradient Boosting)**框架的机器学习算法,通过构建多个决策树并利用每棵树拟合前一棵树的残差来逐步优化模型。


1. 核心思想

  • Boosting:通过逐步调整模型,使后续的模型重点学习前一阶段未能正确拟合的数据。
  • 梯度提升:将误差函数的负梯度作为残差,指导新一轮模型的训练。
与随机森林的区别
特性 随机森林 梯度提升树
基本思想 Bagging Boosting
树的训练方式 并行训练 顺序训练
树的类型 完全树 通常是浅树(弱学习器)
应用场景 抗过拟合、快速训练 高精度、复杂任务

2. 算法流程

  1. 输入

    • 数据集
    • 损失函数 ,如平方误差、对数似然等。
    • 弱学习器个数 T 和学习率 η。
  2. 初始化模型

    • 是一个常数,通常为目标变量的均值(回归)或类别概率的对数(分类)。
  3. 迭代训练每棵弱学习器(树)

    • 第 t 次迭代:
      1. 计算第 t 轮的负梯度(残差):

        残差反映当前模型未能拟合的部分。
      2. 构建决策树 拟合残差
      3. 计算最佳步长(叶节点输出值):
      4. 更新模型: 其中 η 是学习率,控制每棵树的贡献大小。
  4. 输出模型: 最终模型为:


3. 损失函数

GBDT 可灵活选择损失函数,以下是常用的几种:

  1. 平方误差(MSE,回归问题)

    • 负梯度:
  2. 对数似然(Log-Loss,二分类问题)

    • 负梯度:
  3. 指数损失(Adaboost)


4. GBDT 的优缺点

优点
  1. 灵活性:支持回归和分类任务,且损失函数可定制。
  2. 高精度:由于采用 Boosting 框架,能取得非常好的预测效果。
  3. 特征选择:内置特征重要性评估,帮助筛选关键特征。
  4. 处理缺失值:部分实现(如 XGBoost)可以自动处理缺失值。
缺点
  1. 训练时间长:由于弱学习器依次构建,训练过程较慢。
  2. 对参数敏感:需要调整学习率、树的数量、最大深度等参数。
  3. 不擅长高维稀疏数据:相比线性模型和神经网络,GBDT 在处理高维数据(如文本数据)时表现一般。

5. GBDT 的改进

  1. XGBoost

    • 增加正则化项,控制模型复杂度。
    • 支持并行化计算,加速训练。
    • 提供更高效的特征分裂方法。
  2. LightGBM

    • 提出叶子分裂(Leaf-Wise)策略。
    • 适合大规模数据和高维特征场景。
  3. CatBoost

    • 专门针对分类特征优化。
    • 避免目标泄露(Target Leakage)。

6. GBDT 的代码实现

以下是 GBDT 的分类问题实现:

python 复制代码
from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成数据
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建 GBDT 模型
gbdt = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
gbdt.fit(X_train, y_train)

# 预测
y_pred = gbdt.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("分类准确率:", accuracy)

# 特征重要性
import matplotlib.pyplot as plt
import numpy as np

feature_importances = gbdt.feature_importances_
indices = np.argsort(feature_importances)[::-1]

plt.figure(figsize=(10, 6))
plt.title("Feature Importance")
plt.bar(range(X.shape[1]), feature_importances[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.show()

输出结果

bash 复制代码
分类准确率: 0.9366666666666666

7. 应用场景

  1. 回归问题:如预测房价、商品销量。
  2. 分类问题:如金融风险预测、垃圾邮件分类。
  3. 排序问题:如搜索引擎的结果排序。
  4. 时间序列问题:预测趋势或模式。

GBDT 是机器学习中的经典算法,尽管深度学习在许多领域占据主导地位,但在表格数据和中小规模数据集的应用中,GBDT 仍然是非常强大的工具。

相关推荐
我的xiaodoujiao5 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 38--Allure 测试报告
python·学习·测试工具·pytest
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
saoys6 小时前
Opencv 学习笔记:图像掩膜操作(精准提取指定区域像素)
笔记·opencv·学习
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能