空间异质性数据分析不再复杂:地理加权回归分析、主成分分析、判别分析、分位数回归分析、线性回归等

目录

[专题一 地理加权回归下的描述性统计学](#专题一 地理加权回归下的描述性统计学)

[专题二 地理加权主成分分析](#专题二 地理加权主成分分析)

[专题三 地理加权回归](#专题三 地理加权回归)

[专题四 高级回归与回归之外](#专题四 高级回归与回归之外)

更多了解


在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析、地理加权判别分析是处理这类数据的有效模型。本教程从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

专题一 地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二 地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三 地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四 高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

注:请提前安装所需软件


更多了解

①基于R语言的分位数回归实践

②基于R语言的贝叶斯网络模型应用

③最新基于R语言结构方程模型分析与应用

④R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现

⑤基于R、Python的Copula变量相关性分析及AI大模型应用

⑥基于GeoDa与R语言的空间数据回归实践应用

⑦基于R语言的极值统计学及其在相关领域应用

★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

相关推荐
kisshuan123962 天前
【深度学习】【目标检测】基于Mask R-CNN的鱼类尾巴检测与识别
深度学习·目标检测·r语言
开开心心就好3 天前
系统管理工具,多功能隐私清理文件粉碎工具
java·网络·windows·r语言·电脑·excel·symfony
kisshuan123963 天前
【植物图像分析系列】:基于Cascade R-CNN的叶片气孔状态识别与分类任务详解_1
分类·r语言·cnn
Tiger Z6 天前
《R for Data Science (2e)》免费中文翻译 (第17章) --- Dates and times(1)
r语言·编程·数据科学
杜子不疼.6 天前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
Davina_yu6 天前
Windows 下升级 R 语言至最新版
开发语言·windows·r语言
青春不败 177-3266-05207 天前
基于R语言生物信息学大数据分析与绘图技术应用
数据分析·r语言·生物信息·生信·高通量
Catherinemin7 天前
【R语言】2.注释&基础运算
开发语言·r语言
邢博士谈科教7 天前
TCGA单基因高低分组的差异分析后的GSEA-GO和KEGG富集分析教程
数据分析·r语言
Catherinemin8 天前
【R语言】1.安装&基础语法
开发语言·r语言