空间异质性数据分析不再复杂:地理加权回归分析、主成分分析、判别分析、分位数回归分析、线性回归等

目录

[专题一 地理加权回归下的描述性统计学](#专题一 地理加权回归下的描述性统计学)

[专题二 地理加权主成分分析](#专题二 地理加权主成分分析)

[专题三 地理加权回归](#专题三 地理加权回归)

[专题四 高级回归与回归之外](#专题四 高级回归与回归之外)

更多了解


在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成分分析、地理加权判别分析是处理这类数据的有效模型。本教程从局部加权回归开始,详细讲述了基于R语言的空间异质性数据分析方法。

专题一 地理加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

专题二 地理加权主成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

专题三 地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

专题四 高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

注:请提前安装所需软件


更多了解

①基于R语言的分位数回归实践

②基于R语言的贝叶斯网络模型应用

③最新基于R语言结构方程模型分析与应用

④R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现

⑤基于R、Python的Copula变量相关性分析及AI大模型应用

⑥基于GeoDa与R语言的空间数据回归实践应用

⑦基于R语言的极值统计学及其在相关领域应用

★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

相关推荐
十三画者5 小时前
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
python·机器学习·数据挖掘·数据分析·r语言·数据可视化
lishaoan773 天前
实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题
回归·r语言·线性回归·残差分析·实验设计与数据分析·回归显著性
南瓜胖胖3 天前
【R语言编程绘图-mlbench】
开发语言·机器学习·r语言
天桥下的卖艺者3 天前
R语言使用随机过采样(Random Oversampling)平衡数据集
开发语言·r语言
Biomamba生信基地4 天前
R语言基础| 创建数据集
开发语言·r语言·生信·医药
lishaoan774 天前
实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.19 R语言解题
r语言·方差分析·实验设计与分析·残差分析·正态假设·交互作用
weixin_493202635 天前
R语言错误处理方法大全
开发语言·r语言
lishaoan775 天前
实验设计与分析(第6版,Montgomery)第4章随机化区组,拉丁方, 及有关设计4.5节思考题4.1~4.4 R语言解题
r语言·统计分析·方差分析·实验设计与分析·随机化区组
lishaoan775 天前
实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.5 R语言解题
r语言·方差分析·实验设计与分析·残差分析·正态性假设·交互作用·析因实验
lishaoan775 天前
实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.2 R语言解题
r语言·统计分析·方差分析·实验设计与分析·残差分析·交互作用·析因实验