【24年新算法时间序列预测】黑翅鸢BKA优化Transformer时间序列预测(评估指标全,出图多)

本文采用黑翅鸢优化算法( BKA,2024年新算法)优化Transformer模型的超参数,形成了BKA-Transformer时间序列预测模型,以进一步提升其在时间序列预测中的性能,本文采用Matlab编写了BKA-Transformer时间序列预测模型代码,代码注释详细,编写逻辑清晰易懂,可一键运行,数据集采用excel数据形式,方便替换数据集。适合新手学习和SCI建模使用。

BKA-Transformer时间序列预测效果评价指标(包括MAE、MAPE 、MSE、RMSE、R2),效果图训练集和测试集真实值与预测值、误差图、拟合图、损失函数极坐标图等适合新手小白例程学习和SCI建模参考.

Transformer 利用多头注意力机制 (Multi-Head Attention) 和前馈神经网络 (Feedforward Neural Network) 来学习时间序列数据的长期依赖关系。具体来说,Transformer 使用多个编码器层来提取特征,每个编码器层包含多头注意力机制和前馈神经网络。多头注意力机制可以有效地捕捉不同位置之间的时间相关性,而前馈神经网络可以进一步增强特征表达能力。与传统的循环神经网络(RNN)或长短期记忆网络(LSTM)相比,Transformer能够更高效地处理长序列数据,并且训练过程更容易并行化。Transformer 作为一种创新的神经网络结构,深受欢迎。采用 Transformer 编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测等回归模型的准确性。

  1. 黑翅鸢优化算法(BKA)

黑翅鸢优化算法(BKA):一种群体智能优化算法,模拟黑翅鸢在猎物寻找过程中的行为,特别是在飞行和捕食时的行为模式。

黑翅鸢优化算法(BKA)是一种新型的元启发式算法(群体智能优化算法),灵感来源于黑翅鸢迁徙和捕食行为具体为:

个体位置更新:基于黑翅鸢的捕食和飞行行为更新优化算法的个体位置。

适应度评估:根据目标函数对每个个体的适应度进行评估,选择最优解。

行为模拟:包括探索和开发阶段,以寻找全局最优解。

BKA以其优异的性能证明了其在CEC-2022和CEC-2017测试函数的66.7、72.4和77.8%的情况下能够获得最佳性能!该成果由Wang Jun等人于 2024年3月发表在SCI人工智能一区顶刊《Artificial Intelligence Review》上!

运行效果展示:

相关推荐
2501_924731114 分钟前
智慧城市交通场景误检率↓78%!陌讯多模态融合算法实战解析
人工智能·算法·目标检测·视觉检测·智慧城市
PAK向日葵3 小时前
【算法导论】XHS 0824 笔试题解
算法·面试
2501_924534894 小时前
智慧零售商品识别误报率↓74%!陌讯多模态融合算法在自助结算场景的落地优化
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·零售
盖雅工场4 小时前
连锁零售排班难?自动排班系统来解决
大数据·人工智能·物联网·算法·零售
Greedy Alg4 小时前
LeetCode 438. 找到字符串中所有的字母异位词
算法·leetcode·职场和发展
Q741_1474 小时前
C++ 力扣 76.最小覆盖子串 题解 优选算法 滑动窗口 每日一题
c++·算法·leetcode·双指针·滑动窗口
lifallen9 小时前
Hadoop MapReduce 任务/输入数据 分片 InputSplit 解析
大数据·数据结构·hadoop·分布式·算法
熙xi.10 小时前
数据结构 -- 哈希表和内核链表
数据结构·算法·散列表
Ghost-Face10 小时前
并查集提高——种类并查集(反集)
算法