PyTorch torch.cat

PyTorch torch.cat

  • [1. `torch.cat`](#1. torch.cat)
  • [2. Example](#2. Example)
  • [3. Example](#3. Example)
  • References

torch
https://pytorch.org/docs/stable/torch.html

  • torch.cat (Python function, in torch.cat)

1. torch.cat

https://pytorch.org/docs/stable/generated/torch.cat.html

复制代码
torch.cat(tensors, dim=0, *, out=None) -> Tensor

Concatenates the given sequence of seq tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size (0,).

在给定维度上连接给定的 seq 张量序列。所有张量必须具有相同的形状 (连接维度除外),或者是一个大小为 (0,) 的一维空张量。

torch.cat() can be seen as an inverse operation for torch.split() and torch.chunk().
torch.cat() 可以看作是 torch.split()torch.chunk() 的逆运算。

torch.cat() can be best understood via examples.

torch.stack() concatenates the given sequence along a new dimension.
torch.stack() 沿着新维度连接给定的序列。

  • Parameters

tensors (sequence of Tensors) - any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.

任何相同类型的张量 Python 序列。提供的非空张量必须具有相同的形状,连接维度除外。

dim (int, optional) - the dimension over which the tensors are concatenated

连接张量的维度

  • Keyword Arguments

out (Tensor, optional) - the output tensor.

2. Example

复制代码
(base) yongqiang@yongqiang:~$ python
Python 3.11.4 (main, Jul  5 2023, 13:45:01) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818]])
>>>
>>> torch.cat((x, x, x), 0)
tensor([[ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818],
        [ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818],
        [ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818]])
>>>
>>> torch.cat((x, x, x), 1)
tensor([[ 0.0811,  0.4571, -1.5260,  0.0811,  0.4571, -1.5260,  0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818,  1.4803, -0.0314, -1.5818,  1.4803, -0.0314, -1.5818]])
>>>
>>> exit()
(base) yongqiang@yongqiang:~$

3. Example

https://github.com/karpathy/llama2.c/blob/master/model.py

复制代码
import torch

idxs = torch.randn(1, 5)
print("idxs.shape:", idxs.shape)
print("idxs:\n", idxs)

next_idx = torch.randn(1, 1)
print("\nnext_idx.shape:", next_idx.shape)
print("next_idx:\n", next_idx)

print("\nidxs.size(1):", idxs.size(1))
idxs_set = torch.cat((idxs, next_idx), dim=1)
print("\nidxs_set.shape:", idxs_set.shape)
print("idxs_set:\n", idxs_set)

/home/yongqiang/miniconda3/bin/python /home/yongqiang/llm_work/llama2.c/yongqiang.py 
idxs.shape: torch.Size([1, 5])
idxs:
 tensor([[-1.3383,  0.1427,  0.0857,  2.2887,  0.1691]])

next_idx.shape: torch.Size([1, 1])
next_idx:
 tensor([[0.4807]])

idxs.size(1): 5

idxs_set.shape: torch.Size([1, 6])
idxs_set:
 tensor([[-1.3383,  0.1427,  0.0857,  2.2887,  0.1691,  0.4807]])

Process finished with exit code 0

References

1\] Yongqiang Cheng,

相关推荐
纤纡.1 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
子榆.3 小时前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
哈__8 小时前
CANN内存管理与资源优化
人工智能·pytorch
DeniuHe9 小时前
Pytorch中的直方图
pytorch
哈__9 小时前
CANN多模型并发部署方案
人工智能·pytorch
DeniuHe10 小时前
Pytorch中的众数
人工智能·pytorch·python
DeniuHe21 小时前
torch.distribution函数详解
pytorch
退休钓鱼选手1 天前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
DeniuHe1 天前
用 PyTorch 库创建了一个随机张量,并演示了多种张量取整和分解操作
pytorch
Network_Engineer1 天前
从零手写LSTM:从门控原理到PyTorch源码级实现
人工智能·pytorch·lstm