PyTorch torch.cat

PyTorch torch.cat

  • [1. `torch.cat`](#1. torch.cat)
  • [2. Example](#2. Example)
  • [3. Example](#3. Example)
  • References

torch
https://pytorch.org/docs/stable/torch.html

  • torch.cat (Python function, in torch.cat)

1. torch.cat

https://pytorch.org/docs/stable/generated/torch.cat.html

复制代码
torch.cat(tensors, dim=0, *, out=None) -> Tensor

Concatenates the given sequence of seq tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size (0,).

在给定维度上连接给定的 seq 张量序列。所有张量必须具有相同的形状 (连接维度除外),或者是一个大小为 (0,) 的一维空张量。

torch.cat() can be seen as an inverse operation for torch.split() and torch.chunk().
torch.cat() 可以看作是 torch.split()torch.chunk() 的逆运算。

torch.cat() can be best understood via examples.

torch.stack() concatenates the given sequence along a new dimension.
torch.stack() 沿着新维度连接给定的序列。

  • Parameters

tensors (sequence of Tensors) - any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.

任何相同类型的张量 Python 序列。提供的非空张量必须具有相同的形状,连接维度除外。

dim (int, optional) - the dimension over which the tensors are concatenated

连接张量的维度

  • Keyword Arguments

out (Tensor, optional) - the output tensor.

2. Example

复制代码
(base) yongqiang@yongqiang:~$ python
Python 3.11.4 (main, Jul  5 2023, 13:45:01) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818]])
>>>
>>> torch.cat((x, x, x), 0)
tensor([[ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818],
        [ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818],
        [ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818]])
>>>
>>> torch.cat((x, x, x), 1)
tensor([[ 0.0811,  0.4571, -1.5260,  0.0811,  0.4571, -1.5260,  0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818,  1.4803, -0.0314, -1.5818,  1.4803, -0.0314, -1.5818]])
>>>
>>> exit()
(base) yongqiang@yongqiang:~$

3. Example

https://github.com/karpathy/llama2.c/blob/master/model.py

复制代码
import torch

idxs = torch.randn(1, 5)
print("idxs.shape:", idxs.shape)
print("idxs:\n", idxs)

next_idx = torch.randn(1, 1)
print("\nnext_idx.shape:", next_idx.shape)
print("next_idx:\n", next_idx)

print("\nidxs.size(1):", idxs.size(1))
idxs_set = torch.cat((idxs, next_idx), dim=1)
print("\nidxs_set.shape:", idxs_set.shape)
print("idxs_set:\n", idxs_set)

/home/yongqiang/miniconda3/bin/python /home/yongqiang/llm_work/llama2.c/yongqiang.py 
idxs.shape: torch.Size([1, 5])
idxs:
 tensor([[-1.3383,  0.1427,  0.0857,  2.2887,  0.1691]])

next_idx.shape: torch.Size([1, 1])
next_idx:
 tensor([[0.4807]])

idxs.size(1): 5

idxs_set.shape: torch.Size([1, 6])
idxs_set:
 tensor([[-1.3383,  0.1427,  0.0857,  2.2887,  0.1691,  0.4807]])

Process finished with exit code 0

References

1\] Yongqiang Cheng,

相关推荐
递归不收敛12 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.4 强化学习
pytorch·学习·机器学习
递归不收敛13 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.4 模型评估与问题解决
pytorch·学习·机器学习
蒋星熠1 天前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉
it技术1 天前
Pytorch项目实战 :基于RNN的实现情感分析
pytorch·后端
mooooon L2 天前
DAY 43 复习日-2025.10.7
人工智能·pytorch·python·深度学习·神经网络
ting_zh2 天前
PyTorch、TensorFlow、JAX 简介
人工智能·pytorch·tensorflow
wa的一声哭了2 天前
Stanford CS336 assignment1 | Transformer Language Model Architecture
人工智能·pytorch·python·深度学习·神经网络·语言模型·transformer
JJJJ_iii2 天前
【深度学习04】PyTorch:损失函数、优化器、模型微调、保存与加载
人工智能·pytorch·笔记·python·深度学习·机器学习
Francek Chen2 天前
【深度学习计算机视觉】10:转置卷积
人工智能·pytorch·深度学习·计算机视觉·卷积神经网络
算法与编程之美3 天前
探索flatten的其他参数用法及对报错异常进行修正
人工智能·pytorch·python·深度学习·机器学习