PyTorch torch.cat

PyTorch torch.cat

  • [1. `torch.cat`](#1. torch.cat)
  • [2. Example](#2. Example)
  • [3. Example](#3. Example)
  • References

torch
https://pytorch.org/docs/stable/torch.html

  • torch.cat (Python function, in torch.cat)

1. torch.cat

https://pytorch.org/docs/stable/generated/torch.cat.html

复制代码
torch.cat(tensors, dim=0, *, out=None) -> Tensor

Concatenates the given sequence of seq tensors in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be a 1-D empty tensor with size (0,).

在给定维度上连接给定的 seq 张量序列。所有张量必须具有相同的形状 (连接维度除外),或者是一个大小为 (0,) 的一维空张量。

torch.cat() can be seen as an inverse operation for torch.split() and torch.chunk().
torch.cat() 可以看作是 torch.split()torch.chunk() 的逆运算。

torch.cat() can be best understood via examples.

torch.stack() concatenates the given sequence along a new dimension.
torch.stack() 沿着新维度连接给定的序列。

  • Parameters

tensors (sequence of Tensors) - any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.

任何相同类型的张量 Python 序列。提供的非空张量必须具有相同的形状,连接维度除外。

dim (int, optional) - the dimension over which the tensors are concatenated

连接张量的维度

  • Keyword Arguments

out (Tensor, optional) - the output tensor.

2. Example

复制代码
(base) yongqiang@yongqiang:~$ python
Python 3.11.4 (main, Jul  5 2023, 13:45:01) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818]])
>>>
>>> torch.cat((x, x, x), 0)
tensor([[ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818],
        [ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818],
        [ 0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818]])
>>>
>>> torch.cat((x, x, x), 1)
tensor([[ 0.0811,  0.4571, -1.5260,  0.0811,  0.4571, -1.5260,  0.0811,  0.4571, -1.5260],
        [ 1.4803, -0.0314, -1.5818,  1.4803, -0.0314, -1.5818,  1.4803, -0.0314, -1.5818]])
>>>
>>> exit()
(base) yongqiang@yongqiang:~$

3. Example

https://github.com/karpathy/llama2.c/blob/master/model.py

复制代码
import torch

idxs = torch.randn(1, 5)
print("idxs.shape:", idxs.shape)
print("idxs:\n", idxs)

next_idx = torch.randn(1, 1)
print("\nnext_idx.shape:", next_idx.shape)
print("next_idx:\n", next_idx)

print("\nidxs.size(1):", idxs.size(1))
idxs_set = torch.cat((idxs, next_idx), dim=1)
print("\nidxs_set.shape:", idxs_set.shape)
print("idxs_set:\n", idxs_set)

/home/yongqiang/miniconda3/bin/python /home/yongqiang/llm_work/llama2.c/yongqiang.py 
idxs.shape: torch.Size([1, 5])
idxs:
 tensor([[-1.3383,  0.1427,  0.0857,  2.2887,  0.1691]])

next_idx.shape: torch.Size([1, 1])
next_idx:
 tensor([[0.4807]])

idxs.size(1): 5

idxs_set.shape: torch.Size([1, 6])
idxs_set:
 tensor([[-1.3383,  0.1427,  0.0857,  2.2887,  0.1691,  0.4807]])

Process finished with exit code 0

References

1\] Yongqiang Cheng,

相关推荐
希露菲叶特格雷拉特6 小时前
PyTorch深度学习进阶(四)(数据增广)
人工智能·pytorch·深度学习
田里的水稻10 小时前
NN_Transformer、Pytorch、TensorFlow和ONNX的名词辨析
pytorch·tensorflow·transformer
中医正骨葛大夫12 小时前
一文解决如何在Pycharm中创建cuda深度学习环境?
pytorch·深度学习·pycharm·软件安装·cuda·anaconda·配置环境
胖墩会武术12 小时前
【OpenCV图像处理】深度学习:cv2.dnn() —— 图像分类、人脸检测、目标检测
图像处理·pytorch·python·opencv
AI即插即用15 小时前
即插即用系列 | 2025 SOTA Strip R-CNN 实战解析:用于遥感目标检测的大条带卷积
人工智能·pytorch·深度学习·目标检测·计算机视觉·cnn·智慧城市
Paraverse_徐志斌19 小时前
基于 PyTorch + BERT 意图识别与模型微调
人工智能·pytorch·python·bert·transformer
嵌入式-老费19 小时前
自己动手写深度学习框架(pytorch转ncnn)
人工智能·pytorch·深度学习
我叫侯小科20 小时前
PyTorch 实战:手写数字识别(MNIST)从入门到精通
人工智能·pytorch·python
mortimer1 天前
【实战复盘】 PySide6 + PyTorch 偶发性“假死”?由多线程转多进程
pytorch·python·pyqt
studytosky1 天前
深度学习理论与实战:Pytorch基础入门
人工智能·pytorch·python·深度学习·机器学习