39 矩阵置零

39 矩阵置零

39.1 矩阵置零解决方案

解题思路

  • 利用第一行和第一列标记
    • 使用两个标记变量,rowZerocolZero,来判断第一行和第一列是否需要置零。
    • 遍历矩阵从(1,1)开始,如果某个元素是0,则标记该行和该列的第一个元素为0.
    • 最后根据标记来处理第一行和第一列。
  • 步骤
    • 遍历矩阵,将遇到0的行和列的第一个元素设置为0.
    • 遍历结束后,根据第一行和第一列的标记,置零相应的位置。
    • 最后特别处理第一行和第一列,依据rowZero和colZero来决定是否置零。
c++ 复制代码
class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int m = matrix.size();
        int n = matrix[0].size();

        // 标记第一行和第一列是否需要置零
        bool rowZero = false;
        bool colZero = false;

        // 检查第一行是否包含0
        for(int i = 0 ; i < n ;i++){
            if(matrix[0][i] == 0){
                rowZero = true;
                break;
            }
        }

        // 检查第一行是否包含0
        for(int i = 0 ; i < m ;i++){
            if(matrix[i][0] == 0){
                colZero = true;
                break;
            }
        }

        // 用第一行和第一列来标记需要置零的行和列
        for(int i = 1; i < m ; i++ ){
            for(int j = 1; j < n ; j++){
                if(matrix[i][j] == 0){
                    matrix[i][0] = 0; // 标记所在行的第一列
                    matrix[0][j] = 0; // 标记所在列的第一行
                    
                }
            }
        }

        for(int i = 1; i < m ; i++ ){
            for(int j = 1; j < n ; j++){
                if(matrix[i][0] == 0 || matrix[0][j] == 0){
                    matrix[i][j] = 0;
                }
            }
        }

        // 处理第一行是否需要置零
        if(rowZero){
            for(int i = 0; i < n; i++){
                matrix[0][i] = 0;
            }
        }

        // 处理第一列是否需要置零
        if(colZero){
            for(int i = 0; i < m ; i++){
                matrix[i][0] = 0;
            }
        }
    }
};

代码解释

  • 标记第一行和第一列
    • 先通过两个标记变量rowZero和colZero来记录第一行和第一列是否需要置零。
    • 遍历整个矩阵,如果某个元素是0 ,则将其对应的第一行和第一列元素置为0,表示这一行和这一列都需要被置零。
  • 根据标记置零
    • 第二次遍历矩阵(从(1,1)开始),根据第一行和第一列的标记,把相应的元素置为0.
  • 处理第一列和第一行
    • 最后,检查rowZero和colZero,如果需要,就把第一行和第一列的所有元素置为0.

时间复杂度和空间复杂度

  • 时间复杂度 : O ( m ∗ n ) O(m * n ) O(m∗n),其中m 和 n 是矩阵的行数和列数。我们遍历了矩阵几次,每次遍历都是 O ( m ∗ n ) O(m * n) O(m∗n)的时间复杂度。
  • 空间复杂度 : O ( 1 O(1 O(1,因为我们只用了常数空间(除了原矩阵)。

39.2 举例说明

假设有以下矩阵:

复制代码
1  2  3
4  0  6
7  8  9
  • 初始化标记

    • rowZero:用来判断第一行是否需要置零。
    • colZero:用来判断第一列是否需要置零。
      初始状态
  • rowZero = false (假设第一行不需要置零)

  • colZero = false (假设第一行不需要置零)

  • 检查第一行和第一列是否包含零

    • 检查第一行
      • 第一行是1 2 3 ,没有0,因此rowZero不变,仍然为false。
    • 检查第一列
      • 第一列是1 4 7,没有 0,因此colZero不变,仍然为false。
  • 使用第一行和第一列标记需要置零的行和列

    矩阵如下:

    1 2 3
    4 0 6
    7 8 9

  • 遍历(1,1):值是0,因此我们将martix[1][0]martix[0][1]都置为0,表示第二行和第二列需要置零。此时矩阵变为:

    1 2 3
    0 0 6
    7 8 9

  • 遍历 (1,2):值是 6,不需要做任何操作。

  • 遍历 (2,1):值是 7,不需要做任何操作。

  • 遍历 (2,2):值是 8,不需要做任何操作。

矩阵变为:

复制代码
1  2  3
0  0  6
7  8  9
  • 根据标记置零

    • 处理第二行

      • 因为martix[1][0]0,所以整个第二行需要置零。矩阵变为:

        1 2 3
        0 0 0
        7 8 9

    • 处理第三例

      • 因为 matrix[0][2]0,所以整个第三列需要置零。矩阵变为:

        1 2 0
        0 0 0
        7 8 0

  • 处理第一行和第一列

    • 处理第一行

      • 由于rowZero = false,第一行不需要置零,因此保持不变。
    • 处理第一列

      • 由于colZero = false,第一列不需要置零,因此也保持不变。
        最终矩阵

      1 2 0
      0 0 0
      7 8 0

相关推荐
wyhwust10 分钟前
交换排序法&冒泡排序法& 选择排序法&插入排序的算法步骤
数据结构·算法·排序算法
利刃大大13 分钟前
【动态规划:背包问题】完全平方数
c++·算法·动态规划·背包问题·完全背包
wyhwust42 分钟前
数组----插入一个数到有序数列中
java·数据结构·算法
im_AMBER1 小时前
Leetcode 59 二分搜索
数据结构·笔记·学习·算法·leetcode
gihigo19981 小时前
基于MATLAB的IEEE 14节点系统牛顿-拉夫逊潮流算法实现
开发语言·算法·matlab
甄心爱学习2 小时前
数据挖掘-聚类方法
人工智能·算法·机器学习
星释2 小时前
Rust 练习册 82:Hamming与字符串处理
开发语言·算法·rust
在路上看风景3 小时前
2.2 列空间和零空间
线性代数
小张成长计划..3 小时前
【C++】16:模板进阶
c++·算法
AndrewHZ3 小时前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性