OpenCV相机标定与3D重建(11)机器人世界手眼标定函数calibrateRobotWorldHandEye()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算机器人世界/手眼标定: w T b _{}^{w}\textrm{T}_b wTb 和 c T g _{}^{c}\textrm{T}_g cTg。

cv::calibrateRobotWorldHandEye 是 OpenCV 中用于机器人世界手眼标定的函数。该函数通过已知的世界坐标系(world)、相机坐标系(cam)、基座坐标系(base)和平板坐标系(gripper)的姿态来计算基座相对于世界的姿态以及末端执行器相对于相机的姿态。

函数原型

cpp 复制代码
void cv::calibrateRobotWorldHandEye
(
	InputArrayOfArrays 	R_world2cam,
	InputArrayOfArrays 	t_world2cam,
	InputArrayOfArrays 	R_base2gripper,
	InputArrayOfArrays 	t_base2gripper,
	OutputArray 	R_base2world,
	OutputArray 	t_base2world,
	OutputArray 	R_gripper2cam,
	OutputArray 	t_gripper2cam,
	RobotWorldHandEyeCalibrationMethod 	method = CALIB_ROBOT_WORLD_HAND_EYE_SHAH 
)	

参数

  • 参数R_world2cam: 从世界坐标系(world)到相机坐标系(camera)的齐次矩阵中提取的旋转部分 (cTw)。这是一个包含所有从世界坐标系到相机坐标系变换的旋转矩阵 (3x3) 或旋转向量 (3x1) 的向量 (vector)。
  • 参数t_world2cam: 从世界坐标系(world)到相机坐标系(camera)的齐次矩阵中提取的平移部分 (cTw)。这是一个包含所有从世界坐标系到相机坐标系变换的平移向量 (3x1) 的向量 (vector)。
  • 参数R_base2gripper: 从机器人基座坐标系(base)到末端执行器坐标系(gripper)的齐次矩阵中提取的旋转部分 (gTb)。这是一个包含所有从机器人基座坐标系到末端执行器坐标系变换的旋转矩阵 (3x3) 或旋转向量 (3x1) 的向量 (vector)。
  • 参数t_base2gripper: 从机器人基座坐标系(base)到末端执行器坐标系(gripper)的齐次矩阵中提取的平移部分 (gTb)。这是一个包含所有从机器人基座坐标系到末端执行器坐标系变换的平移向量 (3x1) 的向量 (vector)。
  • 参数R_base2world: 估计的从机器人基座坐标系(base)到世界坐标系(world)的齐次矩阵中提取的旋转部分 (wTb),即 (3x3) 旋转矩阵。
  • 参数t_base2world: 估计的从机器人基座坐标系(base)到世界坐标系(world)的齐次矩阵中提取的平移部分 (wTb),即 (3x1) 平移向量。
  • 参数R_gripper2cam: 估计的从末端执行器坐标系(gripper)到相机坐标系(camera)的齐次矩阵中提取的旋转部分 (cTg),即 (3x3) 旋转矩阵。
  • 参数t_gripper2cam: 估计的从末端执行器坐标系(gripper)到相机坐标系(camera)的齐次矩阵中提取的平移部分 (cTg),即 (3x1) 平移向量。
  • 参数method: 实现的机器人世界/手眼标定方法之一,参见 cv::RobotWorldHandEyeCalibrationMethod。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace cv;
using namespace std;

int main()
{
    // 假设我们有四组数据,分别对应不同的抓取位置
    int num_poses = 4;

    // 从 world 到 cam 的旋转矩阵和位移向量
    vector< Mat > R_world2cam( num_poses );
    vector< Mat > t_world2cam( num_poses );

    // 从 base 到 gripper 的旋转矩阵和位移向量
    vector< Mat > R_base2gripper( num_poses );
    vector< Mat > t_base2gripper( num_poses );

    // 初始化示例数据
    R_world2cam[ 0 ] = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );
    t_world2cam[ 0 ] = ( Mat_< double >( 3, 1 ) << 0.1, 0.2, 0.3 );

    R_world2cam[ 1 ] = ( Mat_< double >( 3, 3 ) << 0, -1, 0, 1, 0, 0, 0, 0, 1 );
    t_world2cam[ 1 ] = ( Mat_< double >( 3, 1 ) << 0.4, 0.5, 0.6 );

    R_world2cam[ 2 ] = ( Mat_< double >( 3, 3 ) << 0, 0, -1, 0, 1, 0, 1, 0, 0 );
    t_world2cam[ 2 ] = ( Mat_< double >( 3, 1 ) << 0.7, 0.8, 0.9 );

    R_world2cam[ 3 ] = ( Mat_< double >( 3, 3 ) << 0, 0, 1, 0, 1, 0, -1, 0, 0 );
    t_world2cam[ 3 ] = ( Mat_< double >( 3, 1 ) << 1.0, 1.1, 1.2 );

    R_base2gripper[ 0 ] = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );
    t_base2gripper[ 0 ] = ( Mat_< double >( 3, 1 ) << 0.3, 0.4, 0.5 );

    R_base2gripper[ 1 ] = ( Mat_< double >( 3, 3 ) << 0, -1, 0, 1, 0, 0, 0, 0, 1 );
    t_base2gripper[ 1 ] = ( Mat_< double >( 3, 1 ) << 0.6, 0.7, 0.8 );

    R_base2gripper[ 2 ] = ( Mat_< double >( 3, 3 ) << 0, 0, -1, 0, 1, 0, 1, 0, 0 );
    t_base2gripper[ 2 ] = ( Mat_< double >( 3, 1 ) << 0.9, 1.0, 1.1 );

    R_base2gripper[ 3 ] = ( Mat_< double >( 3, 3 ) << 0, 0, 1, 0, 1, 0, -1, 0, 0 );
    t_base2gripper[ 3 ] = ( Mat_< double >( 3, 1 ) << 1.2, 1.3, 1.4 );

    // 输出变量
    Mat R_base2world, t_base2world;
    Mat R_gripper2cam, t_gripper2cam;

    // 执行机器人世界手眼标定
    calibrateRobotWorldHandEye( R_world2cam, t_world2cam, R_base2gripper, t_base2gripper, R_base2world, t_base2world, R_gripper2cam, t_gripper2cam, CALIB_ROBOT_WORLD_HAND_EYE_SHAH );

    // 输出结果
    cout << "Rotation matrix from base to world:\n" << R_base2world << endl;
    cout << "Translation vector from base to world:\n" << t_base2world << endl;
    cout << "Rotation matrix from gripper to camera:\n" << R_gripper2cam << endl;
    cout << "Translation vector from gripper to camera:\n" << t_gripper2cam << endl;

    return 0;
}

运行结果

bash 复制代码
Rotation matrix from base to world:
[1, 0, 0;
 0, 1, 0;
 0, 0, 1]
Translation vector from base to world:
[4.163336342344337e-17;
 9.71445146547012e-17;
 1.387778780781446e-17]
Rotation matrix from gripper to camera:
[1, 0, 0;
 0, 1, 0;
 0, 0, 1]
Translation vector from gripper to camera:
[-0.2;
 -0.1999999999999999;
 -0.2000000000000001]
相关推荐
起个破名想半天了13 分钟前
计算机视觉cv入门之答题卡自动批阅
人工智能·opencv·计算机视觉
鸿蒙布道师35 分钟前
OpenAI为何觊觎Chrome?AI时代浏览器争夺战背后的深层逻辑
前端·人工智能·chrome·深度学习·opencv·自然语言处理·chatgpt
神奇侠20241 小时前
基于opencv和PaddleOCR识别身份证信息
opencv·paddleocr
满怀10153 小时前
【OpenCV图像处理实战】从基础操作到工业级应用
图像处理·人工智能·python·opencv·计算机视觉·编程入门
Tech Synapse4 小时前
人脸识别考勤系统实现教程:基于Face-Recognition、OpenCV与SQLite
人工智能·opencv·sqlite
子燕若水6 小时前
“Daz to Unreal”将 G8 角色(包括表情)从 daz3d 导入到 UE5。在 UE5 中,我发现使用某个表情并与闭眼混合后,上眼睑出现了问题
3d·ue5
jndingxin7 小时前
OpenCV 图形API(62)特征检测-----在图像中查找最显著的角点函数goodFeaturesToTrack()
人工智能·opencv·计算机视觉
鸿蒙布道师9 小时前
AI硬件遭遇“关税风暴“:中国科技企业如何破局?
人工智能·科技·嵌入式硬件·深度学习·神经网络·opencv·机器人
zhu_zhu_xia12 小时前
JS通过GetCapabilities获取wms服务元数据信息并在SuperMap iClient3D for WebGL进行叠加显示
javascript·3d·webgl
jndingxin12 小时前
OpenCV 图形API(61)图像特征检测------检测图像边缘的函数Canny()
人工智能·opencv·计算机视觉