OpenCV相机标定与3D重建(11)机器人世界手眼标定函数calibrateRobotWorldHandEye()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算机器人世界/手眼标定: w T b _{}^{w}\textrm{T}_b wTb 和 c T g _{}^{c}\textrm{T}_g cTg。

cv::calibrateRobotWorldHandEye 是 OpenCV 中用于机器人世界手眼标定的函数。该函数通过已知的世界坐标系(world)、相机坐标系(cam)、基座坐标系(base)和平板坐标系(gripper)的姿态来计算基座相对于世界的姿态以及末端执行器相对于相机的姿态。

函数原型

cpp 复制代码
void cv::calibrateRobotWorldHandEye
(
	InputArrayOfArrays 	R_world2cam,
	InputArrayOfArrays 	t_world2cam,
	InputArrayOfArrays 	R_base2gripper,
	InputArrayOfArrays 	t_base2gripper,
	OutputArray 	R_base2world,
	OutputArray 	t_base2world,
	OutputArray 	R_gripper2cam,
	OutputArray 	t_gripper2cam,
	RobotWorldHandEyeCalibrationMethod 	method = CALIB_ROBOT_WORLD_HAND_EYE_SHAH 
)	

参数

  • 参数R_world2cam: 从世界坐标系(world)到相机坐标系(camera)的齐次矩阵中提取的旋转部分 (cTw)。这是一个包含所有从世界坐标系到相机坐标系变换的旋转矩阵 (3x3) 或旋转向量 (3x1) 的向量 (vector)。
  • 参数t_world2cam: 从世界坐标系(world)到相机坐标系(camera)的齐次矩阵中提取的平移部分 (cTw)。这是一个包含所有从世界坐标系到相机坐标系变换的平移向量 (3x1) 的向量 (vector)。
  • 参数R_base2gripper: 从机器人基座坐标系(base)到末端执行器坐标系(gripper)的齐次矩阵中提取的旋转部分 (gTb)。这是一个包含所有从机器人基座坐标系到末端执行器坐标系变换的旋转矩阵 (3x3) 或旋转向量 (3x1) 的向量 (vector)。
  • 参数t_base2gripper: 从机器人基座坐标系(base)到末端执行器坐标系(gripper)的齐次矩阵中提取的平移部分 (gTb)。这是一个包含所有从机器人基座坐标系到末端执行器坐标系变换的平移向量 (3x1) 的向量 (vector)。
  • 参数R_base2world: 估计的从机器人基座坐标系(base)到世界坐标系(world)的齐次矩阵中提取的旋转部分 (wTb),即 (3x3) 旋转矩阵。
  • 参数t_base2world: 估计的从机器人基座坐标系(base)到世界坐标系(world)的齐次矩阵中提取的平移部分 (wTb),即 (3x1) 平移向量。
  • 参数R_gripper2cam: 估计的从末端执行器坐标系(gripper)到相机坐标系(camera)的齐次矩阵中提取的旋转部分 (cTg),即 (3x3) 旋转矩阵。
  • 参数t_gripper2cam: 估计的从末端执行器坐标系(gripper)到相机坐标系(camera)的齐次矩阵中提取的平移部分 (cTg),即 (3x1) 平移向量。
  • 参数method: 实现的机器人世界/手眼标定方法之一,参见 cv::RobotWorldHandEyeCalibrationMethod。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace cv;
using namespace std;

int main()
{
    // 假设我们有四组数据,分别对应不同的抓取位置
    int num_poses = 4;

    // 从 world 到 cam 的旋转矩阵和位移向量
    vector< Mat > R_world2cam( num_poses );
    vector< Mat > t_world2cam( num_poses );

    // 从 base 到 gripper 的旋转矩阵和位移向量
    vector< Mat > R_base2gripper( num_poses );
    vector< Mat > t_base2gripper( num_poses );

    // 初始化示例数据
    R_world2cam[ 0 ] = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );
    t_world2cam[ 0 ] = ( Mat_< double >( 3, 1 ) << 0.1, 0.2, 0.3 );

    R_world2cam[ 1 ] = ( Mat_< double >( 3, 3 ) << 0, -1, 0, 1, 0, 0, 0, 0, 1 );
    t_world2cam[ 1 ] = ( Mat_< double >( 3, 1 ) << 0.4, 0.5, 0.6 );

    R_world2cam[ 2 ] = ( Mat_< double >( 3, 3 ) << 0, 0, -1, 0, 1, 0, 1, 0, 0 );
    t_world2cam[ 2 ] = ( Mat_< double >( 3, 1 ) << 0.7, 0.8, 0.9 );

    R_world2cam[ 3 ] = ( Mat_< double >( 3, 3 ) << 0, 0, 1, 0, 1, 0, -1, 0, 0 );
    t_world2cam[ 3 ] = ( Mat_< double >( 3, 1 ) << 1.0, 1.1, 1.2 );

    R_base2gripper[ 0 ] = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );
    t_base2gripper[ 0 ] = ( Mat_< double >( 3, 1 ) << 0.3, 0.4, 0.5 );

    R_base2gripper[ 1 ] = ( Mat_< double >( 3, 3 ) << 0, -1, 0, 1, 0, 0, 0, 0, 1 );
    t_base2gripper[ 1 ] = ( Mat_< double >( 3, 1 ) << 0.6, 0.7, 0.8 );

    R_base2gripper[ 2 ] = ( Mat_< double >( 3, 3 ) << 0, 0, -1, 0, 1, 0, 1, 0, 0 );
    t_base2gripper[ 2 ] = ( Mat_< double >( 3, 1 ) << 0.9, 1.0, 1.1 );

    R_base2gripper[ 3 ] = ( Mat_< double >( 3, 3 ) << 0, 0, 1, 0, 1, 0, -1, 0, 0 );
    t_base2gripper[ 3 ] = ( Mat_< double >( 3, 1 ) << 1.2, 1.3, 1.4 );

    // 输出变量
    Mat R_base2world, t_base2world;
    Mat R_gripper2cam, t_gripper2cam;

    // 执行机器人世界手眼标定
    calibrateRobotWorldHandEye( R_world2cam, t_world2cam, R_base2gripper, t_base2gripper, R_base2world, t_base2world, R_gripper2cam, t_gripper2cam, CALIB_ROBOT_WORLD_HAND_EYE_SHAH );

    // 输出结果
    cout << "Rotation matrix from base to world:\n" << R_base2world << endl;
    cout << "Translation vector from base to world:\n" << t_base2world << endl;
    cout << "Rotation matrix from gripper to camera:\n" << R_gripper2cam << endl;
    cout << "Translation vector from gripper to camera:\n" << t_gripper2cam << endl;

    return 0;
}

运行结果

bash 复制代码
Rotation matrix from base to world:
[1, 0, 0;
 0, 1, 0;
 0, 0, 1]
Translation vector from base to world:
[4.163336342344337e-17;
 9.71445146547012e-17;
 1.387778780781446e-17]
Rotation matrix from gripper to camera:
[1, 0, 0;
 0, 1, 0;
 0, 0, 1]
Translation vector from gripper to camera:
[-0.2;
 -0.1999999999999999;
 -0.2000000000000001]
相关推荐
多恩Stone2 小时前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
南极星10053 小时前
我的创作纪念日--128天
java·python·opencv·职场和发展
晚霞的不甘16 小时前
揭秘 CANN 内存管理:如何让大模型在小设备上“轻装上阵”?
前端·数据库·经验分享·flutter·3d
一招定胜负16 小时前
基于dlib和OpenCV的人脸替换技术详解
opencv·计算机视觉
哈__21 小时前
CANN加速3D目标检测推理:点云处理与特征金字塔优化
目标检测·3d·目标跟踪
勾股导航1 天前
OpenCV图像坐标系
人工智能·opencv·计算机视觉
格林威1 天前
Baumer相机玻璃制品裂纹自动检测:提高透明材质检测精度的 6 个关键步骤,附 OpenCV+Halcon 实战代码!
人工智能·opencv·视觉检测·材质·工业相机·sdk开发·堡盟相机
心疼你的一切1 天前
三维创世:CANN加速的实时3D内容生成
数据仓库·深度学习·3d·aigc·cann
3DVisionary1 天前
掌控发动机“心脏”精度:蓝光3D扫描在凸轮轴全尺寸检测中的应用
3d·图形渲染·汽车发动机·精密测量·蓝光3d扫描·凸轮轴检测·形位公差
coder攻城狮2 天前
VTK系列1:在屏幕绘制多边形
c++·3d