OpenCV相机标定与3D重建(11)机器人世界手眼标定函数calibrateRobotWorldHandEye()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算机器人世界/手眼标定: w T b _{}^{w}\textrm{T}_b wTb 和 c T g _{}^{c}\textrm{T}_g cTg。

cv::calibrateRobotWorldHandEye 是 OpenCV 中用于机器人世界手眼标定的函数。该函数通过已知的世界坐标系(world)、相机坐标系(cam)、基座坐标系(base)和平板坐标系(gripper)的姿态来计算基座相对于世界的姿态以及末端执行器相对于相机的姿态。

函数原型

cpp 复制代码
void cv::calibrateRobotWorldHandEye
(
	InputArrayOfArrays 	R_world2cam,
	InputArrayOfArrays 	t_world2cam,
	InputArrayOfArrays 	R_base2gripper,
	InputArrayOfArrays 	t_base2gripper,
	OutputArray 	R_base2world,
	OutputArray 	t_base2world,
	OutputArray 	R_gripper2cam,
	OutputArray 	t_gripper2cam,
	RobotWorldHandEyeCalibrationMethod 	method = CALIB_ROBOT_WORLD_HAND_EYE_SHAH 
)	

参数

  • 参数R_world2cam: 从世界坐标系(world)到相机坐标系(camera)的齐次矩阵中提取的旋转部分 (cTw)。这是一个包含所有从世界坐标系到相机坐标系变换的旋转矩阵 (3x3) 或旋转向量 (3x1) 的向量 (vector)。
  • 参数t_world2cam: 从世界坐标系(world)到相机坐标系(camera)的齐次矩阵中提取的平移部分 (cTw)。这是一个包含所有从世界坐标系到相机坐标系变换的平移向量 (3x1) 的向量 (vector)。
  • 参数R_base2gripper: 从机器人基座坐标系(base)到末端执行器坐标系(gripper)的齐次矩阵中提取的旋转部分 (gTb)。这是一个包含所有从机器人基座坐标系到末端执行器坐标系变换的旋转矩阵 (3x3) 或旋转向量 (3x1) 的向量 (vector)。
  • 参数t_base2gripper: 从机器人基座坐标系(base)到末端执行器坐标系(gripper)的齐次矩阵中提取的平移部分 (gTb)。这是一个包含所有从机器人基座坐标系到末端执行器坐标系变换的平移向量 (3x1) 的向量 (vector)。
  • 参数R_base2world: 估计的从机器人基座坐标系(base)到世界坐标系(world)的齐次矩阵中提取的旋转部分 (wTb),即 (3x3) 旋转矩阵。
  • 参数t_base2world: 估计的从机器人基座坐标系(base)到世界坐标系(world)的齐次矩阵中提取的平移部分 (wTb),即 (3x1) 平移向量。
  • 参数R_gripper2cam: 估计的从末端执行器坐标系(gripper)到相机坐标系(camera)的齐次矩阵中提取的旋转部分 (cTg),即 (3x3) 旋转矩阵。
  • 参数t_gripper2cam: 估计的从末端执行器坐标系(gripper)到相机坐标系(camera)的齐次矩阵中提取的平移部分 (cTg),即 (3x1) 平移向量。
  • 参数method: 实现的机器人世界/手眼标定方法之一,参见 cv::RobotWorldHandEyeCalibrationMethod。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace cv;
using namespace std;

int main()
{
    // 假设我们有四组数据,分别对应不同的抓取位置
    int num_poses = 4;

    // 从 world 到 cam 的旋转矩阵和位移向量
    vector< Mat > R_world2cam( num_poses );
    vector< Mat > t_world2cam( num_poses );

    // 从 base 到 gripper 的旋转矩阵和位移向量
    vector< Mat > R_base2gripper( num_poses );
    vector< Mat > t_base2gripper( num_poses );

    // 初始化示例数据
    R_world2cam[ 0 ] = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );
    t_world2cam[ 0 ] = ( Mat_< double >( 3, 1 ) << 0.1, 0.2, 0.3 );

    R_world2cam[ 1 ] = ( Mat_< double >( 3, 3 ) << 0, -1, 0, 1, 0, 0, 0, 0, 1 );
    t_world2cam[ 1 ] = ( Mat_< double >( 3, 1 ) << 0.4, 0.5, 0.6 );

    R_world2cam[ 2 ] = ( Mat_< double >( 3, 3 ) << 0, 0, -1, 0, 1, 0, 1, 0, 0 );
    t_world2cam[ 2 ] = ( Mat_< double >( 3, 1 ) << 0.7, 0.8, 0.9 );

    R_world2cam[ 3 ] = ( Mat_< double >( 3, 3 ) << 0, 0, 1, 0, 1, 0, -1, 0, 0 );
    t_world2cam[ 3 ] = ( Mat_< double >( 3, 1 ) << 1.0, 1.1, 1.2 );

    R_base2gripper[ 0 ] = ( Mat_< double >( 3, 3 ) << 1, 0, 0, 0, 1, 0, 0, 0, 1 );
    t_base2gripper[ 0 ] = ( Mat_< double >( 3, 1 ) << 0.3, 0.4, 0.5 );

    R_base2gripper[ 1 ] = ( Mat_< double >( 3, 3 ) << 0, -1, 0, 1, 0, 0, 0, 0, 1 );
    t_base2gripper[ 1 ] = ( Mat_< double >( 3, 1 ) << 0.6, 0.7, 0.8 );

    R_base2gripper[ 2 ] = ( Mat_< double >( 3, 3 ) << 0, 0, -1, 0, 1, 0, 1, 0, 0 );
    t_base2gripper[ 2 ] = ( Mat_< double >( 3, 1 ) << 0.9, 1.0, 1.1 );

    R_base2gripper[ 3 ] = ( Mat_< double >( 3, 3 ) << 0, 0, 1, 0, 1, 0, -1, 0, 0 );
    t_base2gripper[ 3 ] = ( Mat_< double >( 3, 1 ) << 1.2, 1.3, 1.4 );

    // 输出变量
    Mat R_base2world, t_base2world;
    Mat R_gripper2cam, t_gripper2cam;

    // 执行机器人世界手眼标定
    calibrateRobotWorldHandEye( R_world2cam, t_world2cam, R_base2gripper, t_base2gripper, R_base2world, t_base2world, R_gripper2cam, t_gripper2cam, CALIB_ROBOT_WORLD_HAND_EYE_SHAH );

    // 输出结果
    cout << "Rotation matrix from base to world:\n" << R_base2world << endl;
    cout << "Translation vector from base to world:\n" << t_base2world << endl;
    cout << "Rotation matrix from gripper to camera:\n" << R_gripper2cam << endl;
    cout << "Translation vector from gripper to camera:\n" << t_gripper2cam << endl;

    return 0;
}

运行结果

bash 复制代码
Rotation matrix from base to world:
[1, 0, 0;
 0, 1, 0;
 0, 0, 1]
Translation vector from base to world:
[4.163336342344337e-17;
 9.71445146547012e-17;
 1.387778780781446e-17]
Rotation matrix from gripper to camera:
[1, 0, 0;
 0, 1, 0;
 0, 0, 1]
Translation vector from gripper to camera:
[-0.2;
 -0.1999999999999999;
 -0.2000000000000001]
相关推荐
深蓝学院23 分钟前
让一张照片“变立体”:Meta 发布 SAM 3D,实现真正的单图 3D 重建
3d
刘一说1 小时前
WebGIS开发核心库深度解析:从2D到3D的全栈选择
3d·openlayers·webgis
啊阿狸不会拉杆2 小时前
《数字图像处理 》 第 1 章-绪论
图像处理·python·opencv·算法·数字图像处理
测试人社区-小明3 小时前
未来测试岗位的AI需求分析
人工智能·opencv·测试工具·算法·金融·机器人·需求分析
未来之窗软件服务3 小时前
幽冥大陆(五十)屏幕录像手机教程3D透镜主题——东方仙盟炼气期
3d·仙盟创梦ide·东方仙盟·屏幕录像大师
Microvision维视智造3 小时前
告别漏检与低效 ,维视智造用 2D+3D 视觉攻克 3C 连接器质检难题
3d·视觉检测
渊鱼L3 小时前
CAD多面体&过渡区密堆积3D插件
3d
测试人社区-千羽4 小时前
语义分析驱动的测试用例生成:提升软件测试效率的新范式
运维·人工智能·opencv·面试·职场和发展·自动化·测试用例
硅谷秋水4 小时前
PhysX-Anything:从单张图像创建可用于模拟的物理 3D 资源
深度学习·机器学习·计算机视觉·3d·语言模型