34.3 m3db-oom的内存火焰图和内存分配器加油模型源码解读

本节重点介绍 :

  • m3dbnode oom时内存火焰图追查源码调用
  • 内存分配器加油模型源码解读
  • 高基数查询导致m3db oom

m3dbnode oom

oom时排查监控曲线

  • 内存火焰图: 80G内存
  • bytes_pool_get_on_empty qps 很高
  • db read qps增长 80%
  • node cpu kernel 暴涨

看图结论

  • m3dbnode 内存oom过程很短,很剧烈:总时间不超过7分钟
  • 内存从27G增长到250G
  • 节点sys态cpu暴涨:因为大量的mem_alloca sys_call
  • 内存增长曲线和db_read_qps曲线和bytes_pool_get_on_empty曲线高度吻合
  • 内存火焰图: 27G的rpc 40G的pool.(*objectPool).tryFill

查看代码,追踪火焰图中这个tryFill

内存分配器

  • 目的很简单:自己管理内存
  • 避免频繁的mem_allocate
  • sys_call提升速度,空间换时间

核心结构 objectPool

go 复制代码
type objectPool struct {
	opts                ObjectPoolOptions
	values              chan interface{}
	alloc               Allocator
	size                int
	refillLowWatermark  int
	refillHighWatermark int
	filling             int32
	initialized         int32
	dice                int32
	metrics             objectPoolMetrics
}
  • 初始化时调用Init 向池中注入
go 复制代码
func (p *objectPool) Init(alloc Allocator) {
	if !atomic.CompareAndSwapInt32(&p.initialized, 0, 1) {
		p.onPoolAccessErrorFn(errPoolAlreadyInitialized)
		return
	}

	p.values = make(chan interface{}, p.size)
	for i := 0; i < cap(p.values); i++ {
		p.values <- alloc()
	}

	p.alloc = alloc
	p.setGauges()
}

从池中获取对象时

  • 池中还有剩余则直接获取
  • 否则走各自的alloc分配,同时设置这个 bytes_pool_get_on_empty指标+1
go 复制代码
func (p *objectPool) Get() interface{} {
	var (
		metrics = p.metrics
		v       interface{}
	)

	select {
	case v = <-p.values:
	default:
		v = p.alloc()
		metrics.getOnEmpty.Inc(1)
	}

	if unsafe.Fastrandn(sampleObjectPoolLengthEvery) == 0 {
		// inlined setGauges()
		metrics.free.Update(float64(len(p.values)))
		metrics.total.Update(float64(p.size))
	}

	if p.refillLowWatermark > 0 && len(p.values) <= p.refillLowWatermark {
		p.tryFill()
	}

	return v
}

每次Get同时判断池水位,是否加油

go 复制代码
	if p.refillLowWatermark > 0 && len(p.values) <= p.refillLowWatermark {
		p.tryFill()
	}

加油过程

  • 用CompareAndSwapInt32做并发控制标志位
  • 加油加到refillHighWatermark
go 复制代码
func (p *objectPool) tryFill() {
	if !atomic.CompareAndSwapInt32(&p.filling, 0, 1) {
		return
	}

	go func() {
		defer atomic.StoreInt32(&p.filling, 0)

		for len(p.values) < p.refillHighWatermark {
			select {
			case p.values <- p.alloc():
			default:
				return
			}
		}
	}()
}

默认池参数

go 复制代码
	defaultRefillLowWaterMark  = 0.3
	defaultRefillHighWaterMark = 0.6

总结思考

  • 默认池低水位为什么不是0:因为 从水位判断到tryFill中间的并发请求使得最后tryFill开始时低水位可能低于0.3
  • 火焰图中的tryFill消耗了40G内存不是一次性的,类比右侧thriftrpc27,属于累加内存消耗值
  • 一次性的内存消耗肯定没有这么多:每次加油时内存消耗低于初始化
  • 所以可以得到结论,oom是因为在当时byte_pool频繁的get消耗,然后tryFill频繁的加油导致内存分配
  • 所以根本原因还是查询导致的

临时解决办法:限制query资源消耗保护db

  • 首先要明确的几点,因为remote_read是链式的调用
  • 所以限制m3db前面的组件prometheusm3coordinator是没用的
  • 只能限制m3db中关于query的参数,但是这个方法不根治

上面的方法治标不治本,重要的是解决高基数/重查询的问题

本节重点总结 :

  • m3dbnode oom时内存火焰图追查源码调用
  • 内存分配器加油模型源码解读
  • 高基数查询导致m3db oom
相关推荐
一个向上的运维者4 天前
Prometheus生产实战全流程详解(存储/负载/调度篇)
云原生·prometheus
hwj运维之路4 天前
k8s监控方案实践(一):部署Prometheus与Node Exporter
容器·kubernetes·prometheus
Mr.小怪4 天前
自定义prometheus exporter实现监控阿里云RDS
阿里云·adb·prometheus
阿里云云原生4 天前
剑指大规模 AI 可观测,阿里云 Prometheus 2.0 应运而生
人工智能·阿里云·prometheus
小黑_深呼吸5 天前
Prometheus实战教程:k8s平台-Redis监控案例
运维·kubernetes·prometheus·监控
码上淘金6 天前
【Prometheus】业务指标与基础指标的标签来源差异及设计解析(扩展版)
prometheus
Yang三少喜欢撸铁10 天前
通过Docker部署Prometheus + Grafana搭建监控平台【超详细版】
linux·服务器·docker·容器·grafana·prometheus
liuyunshengsir12 天前
Gin 集成 prometheus 客户端实现注册和暴露指标
prometheus·gin
小黑_深呼吸12 天前
k8s平台:手动部署Grafana
运维·学习·kubernetes·grafana·prometheus
阿桨13 天前
【Prometheus-OracleDB Exporter安装配置指南,开机自启】
数据库·oracle·centos·prometheus