【21天学习AI底层概念】day2 机器学习基础

按照由浅入深的顺序,下一步学习 机器学习(Machine Learning) 的基础是最自然的选择。机器学习是人工智能的核心技术之一,很多AI系统都依赖它。以下是学习路线建议:


第二步:机器学习基础

学习目标:
  • 理解机器学习的定义、基本分类和工作原理。

学习内容:

  1. 机器学习的定义

    机器学习是指让计算机通过数据学习规律,从而完成特定任务,而无需明确的规则编码。

  2. 机器学习的三大类型

    • 监督学习(Supervised Learning)
      • 输入和输出已知,训练模型来预测结果。
      • 示例:分类(判断邮件是否是垃圾邮件)、回归(预测房价)。
    • 无监督学习(Unsupervised Learning)
      • 没有输出标签,目标是发现数据的内在结构。
      • 示例:聚类(分组客户)、降维(压缩数据)。
    • 强化学习(Reinforcement Learning)
      • 系统通过试错法,从环境中学习决策的最佳策略。
      • 示例:游戏AI(围棋AI AlphaGo)、机器人控制。
  3. 核心概念:训练和测试

    • 数据集分为 训练集测试集
    • 训练集用于训练模型,测试集评估模型性能。
  4. 学习的数学基础

    • 机器学习与数学密切相关,主要涉及以下领域:
      • 线性代数(用于理解数据表示和模型)
      • 概率与统计(用于理解数据分布和模型预测)
      • 微积分(用于优化模型参数)
  5. 常见的机器学习算法

    • 线性回归(Linear Regression)
    • 决策树(Decision Tree)
    • 支持向量机(SVM)
    • 神经网络(Neural Networks)

推荐学习顺序:

  1. 监督学习 开始(线性回归或分类任务)。
  2. 理解模型训练的过程(损失函数、优化算法等)。
  3. 探索无监督学习和强化学习的基本思想。

你觉得这些内容适合继续深入吗?如果需要详细介绍某个部分,可以告诉我!

相关推荐
Java后端的Ai之路12 小时前
【机器学习】- CatBoost模型参数详细说明
人工智能·机器学习·catboost·模型参数
写点什么呢12 小时前
AD21安装激活
学习
java1234_小锋13 小时前
AI蒸馏技术:让AI更智能、更高效
人工智能·ai·ai蒸馏
饼干哥哥13 小时前
1 个人用AI编程开发的产品卖了8000万美金——Base44的增长策略全拆解
人工智能·ai编程
virtaitech13 小时前
云平台一键部署【Step-1X-3D】3D生成界的Flux
人工智能·科技·ai·gpu·算力·云平台
简叙生活13 小时前
CES2026吹响AI硬件集结号,RTC技术何以成为“隐形引擎”?
人工智能·实时音视频
Elastic 中国社区官方博客13 小时前
jina-embeddings-v3 现已在 Elastic Inference Service 上可用
大数据·人工智能·elasticsearch·搜索引擎·ai·jina
Delroy13 小时前
Vercel 凌晨突发:agent-browser 来了,减少 93% 上下文!AI 终于有了“操纵现实”的手! 🚀
人工智能·爬虫·机器学习
Elastic 中国社区官方博客13 小时前
使用 jina-embeddings-v3 和 Elasticsearch 进行多语言搜索
大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索·jina
百***787513 小时前
GLM-4.7深度实测:开源编码王者,Claude Opus 4.5平替方案全解析
人工智能·gpt