【21天学习AI底层概念】day2 机器学习基础

按照由浅入深的顺序,下一步学习 机器学习(Machine Learning) 的基础是最自然的选择。机器学习是人工智能的核心技术之一,很多AI系统都依赖它。以下是学习路线建议:


第二步:机器学习基础

学习目标:
  • 理解机器学习的定义、基本分类和工作原理。

学习内容:

  1. 机器学习的定义

    机器学习是指让计算机通过数据学习规律,从而完成特定任务,而无需明确的规则编码。

  2. 机器学习的三大类型

    • 监督学习(Supervised Learning)
      • 输入和输出已知,训练模型来预测结果。
      • 示例:分类(判断邮件是否是垃圾邮件)、回归(预测房价)。
    • 无监督学习(Unsupervised Learning)
      • 没有输出标签,目标是发现数据的内在结构。
      • 示例:聚类(分组客户)、降维(压缩数据)。
    • 强化学习(Reinforcement Learning)
      • 系统通过试错法,从环境中学习决策的最佳策略。
      • 示例:游戏AI(围棋AI AlphaGo)、机器人控制。
  3. 核心概念:训练和测试

    • 数据集分为 训练集测试集
    • 训练集用于训练模型,测试集评估模型性能。
  4. 学习的数学基础

    • 机器学习与数学密切相关,主要涉及以下领域:
      • 线性代数(用于理解数据表示和模型)
      • 概率与统计(用于理解数据分布和模型预测)
      • 微积分(用于优化模型参数)
  5. 常见的机器学习算法

    • 线性回归(Linear Regression)
    • 决策树(Decision Tree)
    • 支持向量机(SVM)
    • 神经网络(Neural Networks)

推荐学习顺序:

  1. 监督学习 开始(线性回归或分类任务)。
  2. 理解模型训练的过程(损失函数、优化算法等)。
  3. 探索无监督学习和强化学习的基本思想。

你觉得这些内容适合继续深入吗?如果需要详细介绍某个部分,可以告诉我!

相关推荐
飞哥数智坊6 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI9 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元10 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元10 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心10 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术11 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing11 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_11 小时前
NCCL的用户缓冲区注册
人工智能
sans_11 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算12 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc