Flink的架构体系

Flink 中的重要角⾊

  • JobManager处理器

JobManager处理器也称之为 Master,用于协调分布式执行,它们用来调度task,协调检查点,协调失败时恢复等。Flink运行时至少存在一个master处理器,如果配置高可用模式则会存在多个master处理器,它们其中有一个是leader,而其他的都是standby。

  • TaskManager处理器

TaskManager处理器也称之为Worker ,用于执行一个dataflow的task (或者特殊的subtask)、数据缓冲和data stream的交换,Flink运行时至少会存在一个worker处理器。

  • Slot 任务执行槽位:

物理概念,一个TM(TaskManager)内会划分出多个Slot,1个Slot内最多可以运行1个Task(Subtask)或一组由Task(Subtask)组成的任务链。(类似于 Container)

多个Slot之间会共享平分当前TM的内存空间。Slot是对一个TM的资源进行固定分配的工具,每个Slot在TM启动后,可以获得固定的资源。比如1个TM是一个JVM进程,如果有6个Slot,那么这6个Slot平分这一个JVM进程的资源,但是因为在同一个进程内,所以线程之间共享TCP连接、内存数据等,效率更高(Slot之间交流方便)。

  • Task:

任务,每一个Flink的Job会根据情况(并行度、算子类型)将一个整体的Job划分为多个Task。

  • Subtask:

子任务,一个Task可以由一个或者多个Subtask组成。一个Task有多少个Subtask取决于这个Task的并行度,也就是,每一个Subtask就是当前Task任务并行的一个线程。如,当前Task并行度为8,那么这个Task会有8个Subtask(8个线程并行执行这个Task)。

一个 wordCount 是一个 job,每一个 job 根据算子,切成多个任务 Task ,而每一个 taks 都是并行执行的,有多少个并行度,就启动多少个子任务。

  • 并行度:

并行度就是一个Task可以分成多少个Subtask并行执行的一个参数。这个参数是动态的,可以在任务执行前进行分配,而非Slot分配,TM启动就固定了。

一个Task可以获得的最大并行度取决于整个Flink环境的可用Slot数量,也就是如果有8个Slot,那么最大并行度也就是8,设置的再大也没有意义(还报错)。

假如你只有6个槽,并行度设置为8,启动一会儿之后会报错,启动任务失败,报错如下:

集群中槽的数量虽然是手动设置的,但是也不能超过集群中的 CPU 总核数。

如下图:

  • 一个Job分为了3个Task来运行,分别是TaskA TaskB TaskC
  • 其中TaskA设置为了6个并行度,也就是TaskA可以有6个Subtask,如图可见,TaskA的6个Subtask各自在一个Slot内执行
  • 其中在Slot的时候说过,Slot可以运行由Task(或Subtask)组成的任务链,如图可见,最左边的Slot运行了TaskA TaskB TaskC 3个Task各自的1个Subtask组成的一个Subtask执行链

并行度是一个动态的概念,可以在多个地方设置并行度:【重要】

  • 配置文件默认并行度:conf/flink-conf.yaml的parallelism.default
  • 启动Flink任务,动态提交参数:比如:bin/flink run -p 3 xxx.jar
  • 在代码中设置全局并行度:env.setParallelism(3);
  • 针对每个算子进行单独设置:sum(1).setParallelism(3)

优先级:算子 > 代码全局 > 命令行参数 > 配置文件

相关推荐
会飞的老朱2 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
Hello.Reader7 小时前
Flink ZooKeeper HA 实战原理、必配项、Kerberos、安全与稳定性调优
安全·zookeeper·flink
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw7 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe7 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥8 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿8 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
yunteng5218 小时前
通用架构(同城双活)(单点接入)
架构·同城双活·单点接入
忆~遂愿9 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
麦聪聊数据9 小时前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构