自然语言处理基础及应用场景

自然语言处理定义

让计算机理解人所说的文本 语音

Imitation Game 图灵测试 行为主义 鸭子理论

自然语言处理的基本任务

  • 词性标注:区分每个词名词、动词、形容词等词性
  • 命名实体的识别:名词的具体指代是哪一类事物
  • 共指消解:代词指代的是前面哪一个实体
  • 句法关系:主谓宾这种
  • 中文的自动分词:标注词和词间的空格

应用:

  • 搜索引擎 Search Engines and Ads
    文本匹配
    查询quary和文档document的相似度
    quary和个性化广告
    匹配质量
  • 知识图谱 knowledge graph 2012Google提出
  • 机器阅读 Machine Reading
  • 人类助手 Personal Assistant
  • 机器翻译 Machine Translation
  • 情感分类和意见挖掘 Sentiment Analysis and Opinion Mining
  • 计算社会科学 Computational Social Science

基础概念

词表示 Word Representation

复制代码
- 词相似度
- 词关系
  1. 用和词有关的一些词来表示当前词
    缺点:细微差距丢失、 新的词义缺失、 主观性问题、 数据稀疏、 大量人工
  2. One-Hot Representation
    向量维度 = 词表长度
    缺点:增加了相似词之间的距离
  3. Represent Word by Context
    利用上下文来表示这个词
  4. Co-Occurrence Counts
    包含了上下文信息,上下文出现的频度,稠密向量
    缺点:词表越大,存储需求大,频度出现少的词,上下文出现的就少,词表示会变得稀疏因而效果不好
  5. 深度学习 Word Embedding
    Word2Vec 词向量 将词汇投射到低维空间

语言模型

主要完成两个工作:

联合概率:计算一个序列的词成为一句话的概率是多少(一句话人能读懂的概率)

条件概率:根据前面的词,预测下一个词

传统语言模型的基本假设:

一个未来的词,只会受到前面的词的影响

N-gram Model

前面出现N - 1个词,第N个词的概率是多少

问题:很少考虑长前文,统计是稀疏的;还是One-Hot编码,每个词是一个符号

Neural Language Model

神经网络模型 每个词表示为一个低维的向量

大模型范式

预训练(无标注、自监督) + 微调

四大步骤

预训练->监督式微调->奖励建模->强化学习

预训练占算例99%以上

问答对1w-10w

奖励建模和强化学习,基于人类反馈的强化学习,RLHF

相关推荐
Lilith的AI学习日记几秒前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
聚客AI28 分钟前
PyTorch玩转CNN:卷积操作可视化+五大经典网络复现+分类项目
人工智能·pytorch·神经网络
程序员岳焱31 分钟前
深度剖析:Spring AI 与 LangChain4j,谁才是 Java 程序员的 AI 开发利器?
java·人工智能·后端
柠檬味拥抱33 分钟前
AI智能体在金融决策系统中的自主学习与行为建模方法探讨
人工智能
智驱力人工智能43 分钟前
智慧零售管理中的客流统计与属性分析
人工智能·算法·边缘计算·零售·智慧零售·聚众识别·人员计数
workflower1 小时前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿1 小时前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
张较瘦_1 小时前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能
我不是小upper1 小时前
SVM超详细原理总结
人工智能·机器学习·支持向量机
Yxh181377845541 小时前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵