机器学习作业七

作业七

1. 推导逻辑回归代价函数的梯度计算公式

y^=g(z)=hθ(x)=11+e−θTx\hat y=g(z)=h_θ(x)=\frac{1}{1+e^{-θ^Tx}}y^=g(z)=hθ(x)=1+e−θTx1
L(y^,y)=−ylog(y^)−(1−y)log(1−y^)L(\hat y, y)=-ylog(\hat y)-(1-y)log(1-\hat y)L(y^,y)=−ylog(y^)−(1−y)log(1−y^)
J(θ)=1m∑i=1mL(yi^,yi)J(θ)=\frac{1}{m}\sum_{i=1}^{m}L(\hat{y_i},y_i)J(θ)=m1∑i=1mL(yi^,yi)

梯度下降的目标是通过更新参数 θθθ 来最小化代价函数 J(θ)J(θ)J(θ),更新公式为:θj=θj−α⋅∂J(θ)∂θjθ_j=θ_j-\alpha \cdot \frac{\partial J(θ)}{\partial θ_j}θj=θj−α⋅∂θj∂J(θ)

求∂J(θ)∂θj\frac{\partial J(θ)}{\partial θ_j}∂θj∂J(θ):
∂Li∂θj=∂Li∂yi^⋅∂yi^∂zi⋅∂zi∂θi=(−yiyi^−1−yi1−yi^)⋅(yi^⋅(1−yi^))⋅xi,j=(yi^−yi)⋅xi,j\frac{\partial L_i}{\partial θ_j}=\frac{\partial L_i}{\partial {\hat {y_i}}}\cdot \frac{\partial {\hat {y_i}}}{\partial z_i}\cdot \frac{\partial z_i}{\partial θ_i}=(-\frac{y_i}{\hat{y_i}}-\frac{1-y_i}{1-\hat{y_i}})\cdot (\hat {y_i}\cdot (1-\hat {y_i}))\cdot x_{i,j}=(\hat{y_i}-y_i)\cdot x_{i,j}∂θj∂Li=∂yi^∂Li⋅∂zi∂yi^⋅∂θi∂zi=(−yi^yi−1−yi^1−yi)⋅(yi^⋅(1−yi^))⋅xi,j=(yi^−yi)⋅xi,j

代入得:
θj=θj−α1m∑i=1m(yi^−yi)⋅xi,jθ_j=θ_j-\alpha \frac{1}{m}\sum_{i=1}^{m}(\hat{y_i}-y_i)\cdot x_{i,j}θj=θj−αm1∑i=1m(yi^−yi)⋅xi,j

2. 推导Softmax回归代价函数的梯度计算公式

模型对类别 ccc 的原始得分(logit)为:zc=Wc⋅x=∑j=0nθcjxjz_c=\mathbf{W}c\cdot x=\sum{j=0}^{n}θ_{cj}x_jzc=Wc⋅x=∑j=0nθcjxj

概率分布:yc^=Softmax(z)c=ezc∑c′=1kezc′\hat{y_c}=Softmax(z)c=\frac{e^{z_c}}{\sum{c'=1}^{k}e^zc'}yc^=Softmax(z)c=∑c′=1kezc′ezc

交叉熵损失:L(y^,y)=−∑c=1kyclog(yc^)L(\hat y, y)=-\sum_{c=1}^{k}y_clog(\hat {y_c})L(y^,y)=−∑c=1kyclog(yc^)

总代价函数:J(W)=1m∑i=1mL(y^,y)=−1m∑i=1m∑c=1kyiclog(yic^)J(\mathbf{W})=\frac{1}{m}\sum_{i=1}^{m}L(\hat y, y)=-\frac{1}{m}\sum_{i=1}^{m}\sum_{c=1}^{k}y_{ic}log(\hat {y_{ic}})J(W)=m1∑i=1mL(y^,y)=−m1∑i=1m∑c=1kyiclog(yic^)

梯度推导目标:求 ∂J(W)∂θcj=1m∑i=1m∂Li∂θcj\frac{\partial J(\mathbf{W})}{\partial θ_{cj}}=\frac{1}{m}\sum_{i=1}^{m}\frac{\partial L_i}{\partial θ_{cj}}∂θcj∂J(W)=m1∑i=1m∂θcj∂Li

∂Li∂θcj=−∑c′=1kyic′⋅1yic^⋅∂yic′^∂θcj\frac{\partial L_i}{\partial θ_{cj}}=-\sum_{c'=1}^{k}y_{ic'}\cdot \frac{1}{\hat{y_{ic}}}\cdot \frac{\partial \hat{y_{ic'}}}{\partial θ_{cj}}∂θcj∂Li=−∑c′=1kyic′⋅yic^1⋅∂θcj∂yic′^

∂yic′^∂θcj=\frac{\partial \hat{y_{ic'}}}{\partial θ_{cj}}=∂θcj∂yic′^=

  • 当 c′=cc'=cc′=c 时:yic^(1−yic^)⋅xij\hat{y_{ic}}(1-\hat{y_{ic}})\cdot x_{ij}yic^(1−yic^)⋅xij
  • 当 c′ !=cc'\ !=cc′ !=c 时:−yic′^yic^⋅xij-\hat{y_{ic'}}\hat{y_{ic}}\cdot x_{ij}−yic′^yic^⋅xij

代入化简得:
∂Li∂θcj=−(yic^−yic)⋅xij\frac{\partial L_i}{\partial θ_{cj}}=-(\hat{y_{ic}}-y_{ic})\cdot x_{ij}∂θcj∂Li=−(yic^−yic)⋅xij

∂J(W)∂θcj=1m∑i=1m(yic^−yic)⋅xij\frac{\partial J(\mathbf{W})}{\partial θ_{cj}}=\frac{1}{m}\sum_{i=1}^{m}(\hat{y_{ic}}-y_{ic})\cdot x_{ij}∂θcj∂J(W)=m1∑i=1m(yic^−yic)⋅xij

相关推荐
良策金宝AI5 分钟前
2025电力工程AI助手:良策金宝AI如何领跑行业数智化转型?
人工智能·工程设计
网络精创大傻20 分钟前
在 AWS 上启动您的 AI 代理:Bedrock、Lambda 和 API 网关
人工智能·云计算·aws
说私域26 分钟前
链动2+1模式、AI智能名片与S2B2C商城小程序:破解直播电商流量转化困局的创新路径
人工智能·小程序
想暴富,学技术1 小时前
AI提示词学习基础(一)
人工智能·学习
萤丰信息1 小时前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区
菠菠萝宝1 小时前
【AI应用探索】-7- LLaMA-Factory微调模型
人工智能·深度学习·大模型·llm·nlp·attention·llama
大模型真好玩2 小时前
低代码Agent开发框架使用指南(七)—Coze 数据库详解
人工智能·agent·coze
唐兴通个人2 小时前
金融保险银行营销AI数字化转型培训讲师培训老师唐兴通讲金融银保团队险年金险市场销售
大数据·人工智能
视界先声2 小时前
AIDAv2:重新定义DeFi的AI驱动金融基础设施
人工智能·金融
焦糖码奇朵、2 小时前
移动通信网络建设-实验2:5G站点选型与设备部署
网络·数据库·人工智能·5g·信号处理·基带工程