大模型训练 Learning rate warmup, cosine decay and gradient clipping

1. 学习率Warm up

在训练复杂的模型时,使用学习率热身可以帮助训练稳定。在学习率热身中,我们逐渐增加学习率,从一个非常低的值inital_lr逐渐到用户定义的最大学习率peak_lr

python 复制代码
n_epochs = 15
initial_lr = 0.0001
peak_lr = 0.01

total_steps = len(train_loader) * n_epochs
warmup_steps = int(0.2 * total_steps) # 20% warmup
print(warmup_steps)

2. 余弦退火

在达到最高学习率后,不断降低到min_lr,这是通过余弦函数来实现的,最开始的余弦函数是cos0=1,到最后是cospi = -1,随着迭代次数增加,学习率慢慢递减。

python3 复制代码
import math

min_lr = 0.1 * initial_lr
track_lrs = []

lr_increment = (peak_lr - initial_lr) / warmup_steps
global_step = -1

for epoch in range(n_epochs):
    for input_batch, target_batch in train_loader:
        optimizer.zero_grad()
        global_step += 1
    
        # Adjust the learning rate based on the current phase (warmup or cosine annealing)
        if global_step < warmup_steps:
            # Linear warmup
            lr = initial_lr + global_step * lr_increment  
        else:
            # Cosine annealing after warmup
            progress = ((global_step - warmup_steps) / 
                        (total_training_steps - warmup_steps))
            lr = min_lr + (peak_lr - min_lr) * 0.5 * (
                1 + math.cos(math.pi * progress))
        
        # Apply the calculated learning rate to the optimizer
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr
        track_lrs.append(optimizer.param_groups[0]["lr"])
    
        # Calculate loss and update weights

3. 梯度裁剪

python3 复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

使用clip_grad_norm可以根据L2函数,将梯度的L2范数裁剪到max_norm,方法是直接除。

相关推荐
aigcapi2 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
字节跳动开源2 小时前
Midscene v1.0 发布 - 视觉驱动,UI 自动化体验跃迁
前端·人工智能·客户端
+wacyltd大模型备案算法备案3 小时前
大模型备案怎么做?2025年企业大模型备案全流程与材料清单详解
人工智能·大模型备案·算法备案·大模型上线登记
吾在学习路3 小时前
故事型总结:Swin Transformer 是如何打破 Vision Transformer 壁垒的?
人工智能·深度学习·transformer
sandwu3 小时前
AI自动化测试(一)
人工智能·agent·playwright·ai自动化测试·midscene
问道飞鱼3 小时前
【人工智能】AI Agent 详解:定义、分类与典型案例
人工智能·ai agent
编码小哥3 小时前
OpenCV形态学操作:腐蚀与膨胀原理解析
人工智能·opencv·计算机视觉
lbb 小魔仙3 小时前
AI + 云原生实战:K8s 部署分布式训练集群,效率翻倍
人工智能·云原生·kubernetes
啊巴矲4 小时前
小白从零开始勇闯人工智能:机器学习初级篇(随机森林)
人工智能·机器学习
技术小甜甜4 小时前
[AI Agent] 如何在本地部署 Aider 并接入局域网 Ollama 模型,实现本地智能助手操作系统资源
人工智能·ai·自动化·agent