大模型训练 Learning rate warmup, cosine decay and gradient clipping

1. 学习率Warm up

在训练复杂的模型时,使用学习率热身可以帮助训练稳定。在学习率热身中,我们逐渐增加学习率,从一个非常低的值inital_lr逐渐到用户定义的最大学习率peak_lr

python 复制代码
n_epochs = 15
initial_lr = 0.0001
peak_lr = 0.01

total_steps = len(train_loader) * n_epochs
warmup_steps = int(0.2 * total_steps) # 20% warmup
print(warmup_steps)

2. 余弦退火

在达到最高学习率后,不断降低到min_lr,这是通过余弦函数来实现的,最开始的余弦函数是cos0=1,到最后是cospi = -1,随着迭代次数增加,学习率慢慢递减。

python3 复制代码
import math

min_lr = 0.1 * initial_lr
track_lrs = []

lr_increment = (peak_lr - initial_lr) / warmup_steps
global_step = -1

for epoch in range(n_epochs):
    for input_batch, target_batch in train_loader:
        optimizer.zero_grad()
        global_step += 1
    
        # Adjust the learning rate based on the current phase (warmup or cosine annealing)
        if global_step < warmup_steps:
            # Linear warmup
            lr = initial_lr + global_step * lr_increment  
        else:
            # Cosine annealing after warmup
            progress = ((global_step - warmup_steps) / 
                        (total_training_steps - warmup_steps))
            lr = min_lr + (peak_lr - min_lr) * 0.5 * (
                1 + math.cos(math.pi * progress))
        
        # Apply the calculated learning rate to the optimizer
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr
        track_lrs.append(optimizer.param_groups[0]["lr"])
    
        # Calculate loss and update weights

3. 梯度裁剪

python3 复制代码
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

使用clip_grad_norm可以根据L2函数,将梯度的L2范数裁剪到max_norm,方法是直接除。

相关推荐
Love__Tay10 小时前
使用Upsonic实现金融合规任务自动化:技术实践与思考
人工智能·金融·自动化
腾飞开源10 小时前
23_Spring AI 干货笔记之 NVIDIA 聊天
人工智能·nvidia·spring ai·聊天模型·llm api·openai客户端·配置属性
智链RFID10 小时前
RFID资产管理系统:智能管理新利器
大数据·人工智能
DatGuy10 小时前
Week 28: 机器学习补遗:MoE 原理与时序路由策略
人工智能·机器学习
roman_日积跬步-终至千里10 小时前
【计算机视觉(5)】特征检测与匹配基础篇:从Harris到SIFT的完整流程
人工智能·深度学习·计算机视觉
工藤学编程10 小时前
零基础学AI大模型之相似度Search与MMR最大边界相关搜索实战
人工智能
izx88810 小时前
从 Buffer 到响应式流:Vue3 实现 AI 流式输出的完整实践
javascript·vue.js·人工智能
知识浅谈10 小时前
传统爬虫太耗时?AI一键生成企业级爬虫架构
人工智能·爬虫
许泽宇的技术分享10 小时前
当AI学会“自己动手,丰衣足食“:深度剖析AgentGPT的自主智能之路
人工智能
CS创新实验室10 小时前
计算机视觉:从感知到生成的产业变革与未来展望
人工智能·计算机视觉