【漫话机器学习系列】005.神经网络的结构(architecture on the neural network)

神经网络(Neural Network)是一种模拟人脑神经系统的计算模型,由大量相互连接的神经元(节点)组成,广泛应用于深度学习和机器学习领域。以下是神经网络的基本结构及关键组成部分。


1. 神经网络的基本组成

一个神经网络通常由以下部分组成:

  1. 输入层(Input Layer)

    • 接收输入数据,每个节点代表一个输入特征。
    • 输入数据的维度决定输入层的神经元个数。
  2. 隐藏层(Hidden Layers)

    • 位于输入层和输出层之间。
    • 包含多个神经元,负责学习和提取特征。
    • 可以有多个隐藏层,层数和每层的神经元数量决定网络的复杂度。
  3. 输出层(Output Layer)

    • 生成最终的输出。
    • 输出神经元的数量取决于任务类型:
      • 回归任务:一个输出神经元。
      • 二分类任务:一个神经元(通常配合 Sigmoid 激活函数)。
      • 多分类任务:输出神经元数量等于类别数量(通常配合 Softmax 激活函数)。
  4. 连接权重和偏置(Weights & Biases)

    • 权重:连接神经元之间的权重,表示输入特征的重要性。
    • 偏置:调整模型的灵活性,帮助模型更好地拟合数据。

2. 神经元的结构

每个神经元是一个简单的计算单元,核心结构包括:

  1. 输入

    • 接收来自上一层神经元的输出,经过权重和偏置修正。
  2. 线性组合

    • 对输入进行加权求和:
      • :权重
      • :输入
      • b:偏置
  3. 激活函数(Activation Function)

    • 将线性组合的结果映射为非线性输出,便于处理复杂问题。
    • 常见激活函数:
      • Sigmoid:
      • Tanh:
      • ReLU:
  4. 输出

    • 激活函数的结果传递到下一层。

3. 网络拓扑结构

根据网络的连接方式和节点分布,神经网络可以有不同的拓扑结构:

  1. 全连接网络(Fully Connected Network, FCN)

    • 每个神经元与下一层的每个神经元相连。
    • 用于处理结构化数据。
  2. 卷积神经网络(Convolutional Neural Network, CNN)

    • 用于图像数据。
    • 包括卷积层、池化层、全连接层等。
  3. 循环神经网络(Recurrent Neural Network, RNN)

    • 用于处理序列数据(如时间序列、文本)。
    • 包括 LSTM 和 GRU 等改进版本。
  4. 生成对抗网络(Generative Adversarial Network, GAN)

    • 包括生成器和判别器两个子网络,用于生成数据。

4. 前向传播与反向传播
  1. 前向传播(Forward Propagation)

    • 数据从输入层经过隐藏层传递到输出层。
    • 计算每层的激活值,最终输出预测值。
  2. 反向传播(Backpropagation)

    • 根据损失函数计算误差。
    • 从输出层向输入层更新权重和偏置。
    • 使用梯度下降算法进行优化。

5. 损失函数

损失函数用于衡量模型预测值与真实值的差异。

  1. 均方误差(MSE)

    • 用于回归问题。
  2. 交叉熵损失(Cross-Entropy Loss)

    • 用于分类问题。

6. 神经网络的深度
  1. 浅层神经网络(Shallow Neural Network)

    • 只有一个隐藏层,适用于简单问题。
  2. 深度神经网络(Deep Neural Network, DNN)

    • 包含多个隐藏层,可以表示复杂的非线性关系。

7. 总结

神经网络的结构灵活多样,其核心在于通过前向传播和反向传播不断调整参数,以提高模型对数据的拟合能力。根据任务和数据类型,选择适当的网络结构和优化方法是构建神经网络的关键。

相关推荐
电子科技圈2 分钟前
在低功耗MCU上实现人工智能和机器学习
人工智能·经验分享·科技·嵌入式硬件·mcu·物联网·机器学习
G***技11 分钟前
杰和科技GAM-AI视觉识别管理系统,让AI走进零售营销
大数据·人工智能·系统架构
小宇爱20 分钟前
38、深度学习-自学之路-自己搭建深度学习框架-3、自动梯度计算改进
人工智能·深度学习·自然语言处理
nuise_38 分钟前
朴素贝叶斯法
人工智能·机器学习·概率论
ehiway1 小时前
FPGA+GPU+CPU国产化人工智能平台
人工智能·fpga开发·硬件工程·国产化
天天爱吃肉82181 小时前
碳化硅(SiC)功率器件:新能源汽车的“心脏”革命与技术突围
大数据·人工智能
萧鼎1 小时前
利用 OpenCV 进行棋盘检测与透视变换
人工智能·opencv·计算机视觉
神秘的土鸡2 小时前
使用Open WebUI下载的模型文件(Model)默认存放在哪里?
人工智能·llama·ollama·openwebui
梦里是谁N2 小时前
【deepseek之我问】如何把AI技术与教育相结合,适龄教育,九年义务教育,以及大学教育,更着重英语学习。如何结合,给出观点。结合最新智能体Deepseek
人工智能·学习
小白狮ww3 小时前
国产超强开源大语言模型 DeepSeek-R1-70B 一键部署教程
人工智能·深度学习·机器学习·语言模型·自然语言处理·开源·deepseek