数值分析—数值积分

研究背景

积分的数学解法为牛顿莱布尼兹公式,数学表示为 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x)dx=F(b)-F(a) ∫abf(x)dx=F(b)−F(a),但应用该方法有如下困难:

1, f ( x ) f(x) f(x)的原函数有时不能用初等函数表示,如 e − x 2 e^{-x^2} e−x2和 s i n x x \frac{sinx}{x} xsinx;

2,原函数可以用初等函数表示,但很复杂,如 x 2 1 + 2 x 2 x^2\sqrt{1+2x^2} x21+2x2 ;

3, f ( x ) f(x) f(x)本身无表达式,只有在若干点上的值。

针对这些问题,本章介绍几种近似求解积分的方法。

数值积分公式

数值积分

由中值定理 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , \int_{a}^{b} f(x)dx=f(\xi)(b-a), ∫abf(x)dx=f(ξ)(b−a),其中 f ( ξ ) f(\xi) f(ξ)为 f ( x ) f(x) f(x)在[a,b]上的平均高度,可以不求原函数计算积分,但 ξ \xi ξ未知,故基于该方法,提出数值积分公式------用a代替 ξ \xi ξ,即 ∫ a b f ( x ) d x ≈ f ( a ) ( b − a ) \int_{a}^{b} f(x)dx\approx f(a)(b-a) ∫abf(x)dx≈f(a)(b−a),计算左端点为宽的矩阵公式,称为左矩阵公式,同理还有右矩阵公式 f ( b ) ( b − a ) f(b)(b-a) f(b)(b−a)和中矩阵公式 f ( a + b 2 ) ( b − a ) f(\frac{a+b}{2})(b-a) f(2a+b)(b−a)。

矩形的误差可能过于大了,该方法则再次修正为 f ( a ) + f ( b ) 2 ( b − a ) \frac{f(a)+f(b)}{2}(b-a) 2f(a)+f(b)(b−a),即根据端点函数值计算梯形面积近似积分值。

该方法的再次改进为近似计算函数的平均值, f ( ξ ) ( b − a ) ≈ ∑ k = 0 n f ( x k ) n + 1 ( b − a ) f(\xi)(b-a)\approx \frac{\sum_{k=0}^{n}f(x_{k})}{n+1}(b-a) f(ξ)(b−a)≈n+1∑k=0nf(xk)(b−a),用多个点的平均值代替 f ( ξ ) f(\xi) f(ξ),上式可抽象为 ∑ k = 0 n A k f ( x k ) \sum_{k=0}^{n}A_{k}f(x_{k}) ∑k=0nAkf(xk),其中 A k A_{k} Ak称为权,该算法关键在于如何确定 A k A_{k} Ak和 x k x_{k} xk,取点越多一定越精确,但如何衡量精确程度呢?

误差分析 R ( x ) = ∫ a b f ( x ) d x − ∑ k = 0 n A k f ( x k ) R(x)=\int_{a}^{b} f(x)dx-\sum_{k=0}^{n}A_{k}f(x_{k}) R(x)=∫abf(x)dx−∑k=0nAkf(xk)

代数精度

定义:若数值积分公式对一切 ≤ m \le m ≤m次的多项式均能精确成立,则称次求积公式至少具有m次代数精度,若求积公式对一切 ≤ m \le m ≤m次的多项式均能精确成立,但对 m + 1 m+1 m+1次多项式不能精确成立,则称此公式的代数精度为m次。

求积公式代数精度越高,使公式精确成立的多项式次数越高。

定理

求积公式具有m次代数精度的充要条件,当 f ( x ) = 1 , x , x 2 . . . x m f(x)=1,x,x^{2}...x^{m} f(x)=1,x,x2...xm时公式均能准确成立,但 f ( x ) = x m + 1 f(x)=x^{m+1} f(x)=xm+1时不能准确成立。

例题 :梯形公式的代数精度为多少?

解:梯形公式 ∫ a b f ( x ) d x = f ( a ) + f ( b ) 2 ( b − a ) \int_{a}^{b} f(x)dx=\frac{f(a)+f(b)}{2}(b-a) ∫abf(x)dx=2f(a)+f(b)(b−a)

令 f ( x ) = 1 f(x)=1 f(x)=1,左边=b-a=右边

令 f ( x ) = x f(x)=x f(x)=x,左= b 2 − a 2 2 \frac{b^{2}-a^{2}}{2} 2b2−a2=右

令 f ( x ) = x 2 f(x)=x^{2} f(x)=x2, b 3 − a 3 2 ! = ( a 2 + b 2 ) 2 ( b − a ) \frac{b^3-a^3}{2}!=\frac{(a^2+b^2)}{2}(b-a) 2b3−a3!=2(a2+b2)(b−a)=右边

故该公式的代数精度为1。

插值型求积公式及Newton-Cotes公式

插值型求积公式

利用Lagrange插值求n次多项式的 L n ( x ) = ∑ k = 0 n f ( x k ) l k ( x ) L_{n}(x)=\sum_{k=0}^{n}f(x_{k})l_{k}(x) Ln(x)=∑k=0nf(xk)lk(x),

其中 f ( x ) = L n ( x ) + R n ( x ) , R n x = f n + 1 ( ξ ) ( n + 1 ) ! w n + 1 ( x ) f(x)=L_{n}(x)+R_{n}(x),R_n{x}=\frac{f^{n+1}(\xi)}{(n+1)!}w_{n+1}(x) f(x)=Ln(x)+Rn(x),Rnx=(n+1)!fn+1(ξ)wn+1(x)

则 ∫ a b f ( x ) d x = ∫ a b L n ( x ) d x + ∫ a b R n ( x ) d x = ∫ a b ∑ k = 0 n f ( x k ) l k ( x ) d x + ∫ a b R n ( x ) d x = ∑ k = 0 n f ( x k ) ∫ a b l k ( x ) d x + ∫ a b R n ( x ) d x A k \int_{a}^{b} f(x)dx=\int_{a}^{b} L_{n}(x)dx+\int_{a}^{b}R_{n}(x)dx=\int_{a}^{b} \sum_{k=0}^{n}f(x_{k})l_{k}(x)dx+\int_{a}^{b}R_{n}(x)dx=\sum_{k=0}^{n}f(x_{k})\frac{\int_{a}^{b}l_{k}(x)dx+\int_{a}^{b}R_{n}(x)dx}{A_{k}} ∫abf(x)dx=∫abLn(x)dx+∫abRn(x)dx=∫abk=0∑nf(xk)lk(x)dx+∫abRn(x)dx=k=0∑nf(xk)Ak∫ablk(x)dx+∫abRn(x)dx

即用插值多项式代替被积函数。

若定义求积公式 ∫ a b f ( x ) d x ≈ ∑ k = 0 n A k f ( x k ) \int_{a}^{b} f(x)dx\approx\sum_{k=0}^{n}A_{k}f(x_{k}) ∫abf(x)dx≈∑k=0nAkf(xk)中的求积公式用插值公式 A k = ∫ a b l k ( x ) d x A_{k}=\int_{a}^{b}l_{k}(x)dx Ak=∫ablk(x)dx表示,则称该数值积分公式为插值型求积公式

定理:插值型数值积分公式的代数精度至少有n阶精度。

注: ∑ k = 0 n A k = ∑ k = 0 n ∫ a b l k ( x ) d x = ∫ a b ∑ k = 0 n A k d x = ∫ a b 1 d x = b − a \sum_{k=0}^{n}A_{k}=\sum_{k=0}^{n}\int_{a}^{b}l_{k}(x)dx=\int_{a}^{b}\sum_{k=0}^{n}A_{k}dx=\int_{a}^{b}1dx=b-a ∑k=0nAk=∑k=0n∫ablk(x)dx=∫ab∑k=0nAkdx=∫ab1dx=b−a

Newton-Cotes公式

该公式主要研究具体节点的取法,若取[a,b]上n+1个等距节点, x 0 , x 1 . . . x n x_{0},x_{1}...x_{n} x0,x1...xn即第k个节点的值为初始值加上k步步长 x k = x 0 + k h x_{k}=x_{0}+kh xk=x0+kh,其中 h = b − a h , x 0 = a h=\frac{b-a}{h},x_{0}=a h=hb−a,x0=a,利用这些节点作n次Lagrange插值多项式,有如下公式:

∫ a b f ( x ) d x ≈ ∫ a b l k ( x ) f ( x k ) d x \int_{a}^{b}f(x)dx\approx \int_{a}^{b}l_{k}(x)f(x_{k})dx ∫abf(x)dx≈∫ablk(x)f(xk)dx

A k = ∫ a b ( x − x 0 ) ( x − x 1 ) . . . ( x − x k − 1 ) ( x − x k + 1 ) . . . ( x − x n ) ( x k − x 0 ) ( x k − x 1 ) . . . ( x k − x k k − 1 ) ( x k − x k + 1 ) . . . ( x k − x n ) d x A_{k}=\int_{a}^{b}\frac{(x-x_{0})(x-x_{1})...(x-x_{k-1})(x-x_{k+1})...(x-x_{n})}{(x_{k}-x_{0})(x_{k}-x_{1})...(x_{k}-x_{kk-1})(x_{k}-x_{k+1})...(x_{k}-x_{n})}dx Ak=∫ab(xk−x0)(xk−x1)...(xk−xkk−1)(xk−xk+1)...(xk−xn)(x−x0)(x−x1)...(x−xk−1)(x−xk+1)...(x−xn)dx

令 x = a + t h , x k = a + k h x=a+th,x_{k}=a+kh x=a+th,xk=a+kh,原式= ∫ a b ( b − a ) ( − 1 ) n − k n k ! ( n − k ) ! ∫ 0 n t ( t − 1 ) . . . ( t − k + 1 ) ( t − k − 1 ) . . . ( t − n ) d t \int_{a}^{b}\frac{(b-a)(-1)^n-k}{nk!(n-k)!}\int_{0}^{n}t(t-1)...(t-k+1)(t-k-1)...(t-n)dt ∫abnk!(n−k)!(b−a)(−1)n−k∫0nt(t−1)...(t−k+1)(t−k−1)...(t−n)dt

令 C k n = ( b − a ) ( − 1 ) n − k n k ! ( n − k ) ! ∫ 0 n t ( t − 1 ) . . . ( t − k + 1 ) ( t − k − 1 ) . . . ( t − n ) d t C_{k}^{n}=\frac{(b-a)(-1)^n-k}{nk!(n-k)!}\int_{0}^{n}t(t-1)...(t-k+1)(t-k-1)...(t-n)dt Ckn=nk!(n−k)!(b−a)(−1)n−k∫0nt(t−1)...(t−k+1)(t−k−1)...(t−n)dt则为Cotes系数, A k = ( b − a ) C k n A_{k}=(b-a)C_{k}^{n} Ak=(b−a)Ckn

最终Newton-Cotes公式为 ∫ a b f ( x ) d x ≈ ( b − a ) ∑ k = 0 n C k n f ( x k ) \int_{a}^{b} f(x)dx\approx (b-a)\sum_{k=0}^{n}C_{k}^{n}f(x_{k}) ∫abf(x)dx≈(b−a)∑k=0nCknf(xk),即节点均匀分割的求和公式。

例如当n=1,
C o 1 = ( − 1 ) 1 1 ! 0 ! 1 ! , ∫ 0 1 ( t − 1 ) d t = 1 2 C_{o}^{1}=\frac{(-1)^1}{1!0!1!},\int_{0}^{1}(t-1)dt=\frac{1}{2} Co1=1!0!1!(−1)1,∫01(t−1)dt=21
C 1 1 = ( − 1 ) 1 1 ! 1 ! 0 ! , ∫ 0 1 t d t = − 1 2 C_{1}^{1}=\frac{(-1)^1}{1!1!0!},\int_{0}^{1}tdt=-\frac{1}{2} C11=1!1!0!(−1)1,∫01tdt=−21

则 ∫ a b f ( x ) d x ≈ b − a 2 [ f ( a ) + f ( b ) ] \int_{a}^{b}f(x)dx\approx \frac{b-a}{2}[f(a)+f(b)] ∫abf(x)dx≈2b−a[f(a)+f(b)]

即在[a,b]区间整体运算,此时计算方法为梯形公式,代数精度为1.

当n=2时,

分别计算 C 0 2 , C 1 2 , C 2 2 C_{0}^{2},C_{1}^{2},C_{2}^{2} C02,C12,C22,
∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_{a}^{b}f(x)dx\approx \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] ∫abf(x)dx≈6b−a[f(a)+4f(2a+b)+f(b)]

该公式为Sinpson公式,至少精度为2

n=4时为Cotes公式,具有至少5次代数精度。

定理:n为偶数时,其代数精度至少为n+1次,n表示区间个数,而非节点个数,如5个节点将区间分为四个区间,精度为5。

例题 : f ( x ) = x 2 时,用梯形公式和 S i m p s o n 计算 ∫ 0 2 x 2 d x f(x)=x^2时,用梯形公式和Simpson计算\int_{0}^{2}x^2dx f(x)=x2时,用梯形公式和Simpson计算∫02x2dx。

解:

梯形公式 ∫ 0 2 x 2 d x ≈ 2 − 0 2 ( 0 + 4 ) = 4 \int_{0}^{2}x^2dx\approx \frac{2-0}{2}(0+4)=4 ∫02x2dx≈22−0(0+4)=4

Simpson ∫ 0 2 x 2 d x ≈ 2 − 0 6 ( 0 + 4 + 4 ) = 8 3 \int_{0}^{2}x^2dx\approx \frac{2-0}{6}(0+4+4)=\frac{8}{3} ∫02x2dx≈62−0(0+4+4)=38

可以看到梯形公式的误差还是比较大的,而Simpson甚至得到了精确答案。

性质:

1,对称性。 C k n = C n − k n C_{k}^{n}=C_{n-k}^n Ckn=Cn−kn

2, ∑ k = 0 n C k n = 1 \sum_{k=0}^{n}C_{k}^{n}=1 ∑k=0nCkn=1

Newton-Cotes余项:

梯形公式下 R ( f ) = ∫ a b f ′ ′ ( ξ ) 2 ( x − a ) ( x − b ) d x R(f)=\int_{a}^{b}\frac{f''(\xi)}{2}(x-a)(x-b)dx R(f)=∫ab2f′′(ξ)(x−a)(x−b)dx,存在 η ∈ [ 0 , 1 ] ,使 R ( f ) = 1 2 f ′ ′ ( η ) ∫ a b ( x − a ) ( x − b ) d x = − f ′ ′ ( η ) 12 ( b − a ) 3 \eta \in [0,1],使R(f)=\frac{1}{2}f''(\eta)\int_{a}^{b}(x-a)(x-b)dx=-\frac{f''(\eta)}{12}(b-a)^3 η∈[0,1],使R(f)=21f′′(η)∫ab(x−a)(x−b)dx=−12f′′(η)(b−a)3

同理:

Simpson余项 R ( f ) = − 1 90 ( b − a 2 ) 5 f 4 ( η ) R(f)=-\frac{1}{90}(\frac{b-a}{2})^5f^4(\eta) R(f)=−901(2b−a)5f4(η)

Cotes余项 R ( f ) = 2 ( b − a ) 945 ( b − a 4 ) 6 f 6 ( η ) R(f)=\frac{2(b-a)}{945}(\frac{b-a}{4})^6f^6(\eta) R(f)=9452(b−a)(4b−a)6f6(η)

复化求积公式

为了克服容格现象,用分段函数代替原函数,用于求积分时同样应用分治思想,划分区间应用梯形或Simpson公式,使用分段线性插值代替原函数,数学公式表示为 ∫ a b f ( x ) d x = ∑ k = 0 n − 1 ∫ x k x k + 1 f ( x ) d x ≈ ∑ k = 0 n − 1 I k \int_{a}^{b}f(x)dx= \sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}f(x)dx\approx \sum_{k=0}^{n-1}I_k ∫abf(x)dx=∑k=0n−1∫xkxk+1f(x)dx≈∑k=0n−1Ik,其中 I k = ∫ x k x k + 1 f ( x ) d x ≈ h 2 [ f ( x k ) + f ( x k + 1 ) ] I_k=\int_{x_k}^{x_{k+1}}f(x)dx\approx \frac{h}{2}[f(x_k)+f(x_{k+1})] Ik=∫xkxk+1f(x)dx≈2h[f(xk)+f(xk+1)] 或用Simpson

复化的梯形公式

分割区间使用 I = ∫ x k x k + 1 f ( x ) d x ≈ h 2 [ f ( x k ) + f ( x k + 1 ) ] I_=\int_{x_k}^{x_{k+1}}f(x)dx\approx \frac{h}{2}[f(x_k)+f(x_{k+1})] I=∫xkxk+1f(x)dx≈2h[f(xk)+f(xk+1)], I k = ∑ k = 0 n − 1 ∫ x k x k + 1 f ( x ) d x ≈ 2 h 2 [ f ( a ) + f ( b ) ] + 2 ∑ k = 1 n − 1 f ( x k ) I_k= \sum_{k=0}^{n-1}\int_{x_k}^{x_{k+1}}f(x)dx \approx 2\frac{h}{2}[f(a)+f(b)]+2\sum_{k=1}^{n-1}f(x_k) Ik=∑k=0n−1∫xkxk+1f(x)dx≈22h[f(a)+f(b)]+2∑k=1n−1f(xk)

多个区间分别计算梯形公式后求和

Romberg公式

复化梯形公式方程 T n = h 2 [ f ( a ) + f ( h ) + 2 ∑ k = 0 n − 1 f ( x k + 1 2 ) ] T_n=\frac{h}{2}[f(a)+f(h)+2\sum_{k=0}^{n-1}f(x_{k+\frac{1}{2}})] Tn=2h[f(a)+f(h)+2∑k=0n−1f(xk+21)],将 T n = T 1 ( h ) T_n=T_1(h) Tn=T1(h),由E-M欧拉麦克劳林公式, T 1 ( h ) − I = α 1 h 2 + α 2 h 4 + . . . + α k h 2 k + . . . T_1(h)-I=\alpha_1h^2+\alpha_2h^4+...+\alpha_kh^2k+... T1(h)−I=α1h2+α2h4+...+αkh2k+...

后面不写了,反正使用外推法构造出高精度积分公式 T m + 1 ( h ) = 4 m 4 m − 1 T m ( h 2 ) − 1 4 m − 1 T_{m+1}(h)=\frac{4^m}{4^{m}-1}T_m(\frac{h}{2})-\frac{1}{4^{m}-1} Tm+1(h)=4m−14mTm(2h)−4m−11

计算过程如下图:

例题 :利用复化求积公式将[0,1]8等分,计算 I = ∫ 0 1 4 + x 1 + x 2 I=\int_{0}^{1}\frac{4+x}{1+x^2} I=∫011+x24+x。

解:

复化梯形公式, I ≈ 1 2 × 8 [ f ( 0 ) + f ( 1 ) + 2 ∑ 1 7 f ( x k ) ] ≈ 3 , 138988 I\approx\frac{1}{2×8}[f(0)+f(1)+2\sum_{1}^7f(x_k)]\approx 3,138988 I≈2×81[f(0)+f(1)+2∑17f(xk)]≈3,138988

复化Simpson, I ≈ 1 6 × 4 [ ] f ( 0 ) + f ( 1 ) + 4 ∑ 0 3 f ( x k + 1 2 ) + 2 ∑ 1 3 f ( x k ) ] ≈ 3.141593 I\approx\frac{1}{6×4}[]f(0)+f(1)+4\sum_{0}^3f(x_{k+\frac{1}{2}})+2\sum_{1}^3f(x_k)]\approx3.141593 I≈6×41[]f(0)+f(1)+4∑03f(xk+21)+2∑13f(xk)]≈3.141593

步长越多结果越精确,但应用中具体步长我们难以直接确定,下面将介绍一种能够使步长动态迭代的方法。

变步长的梯形公式

基本思想为:原步长h折半,再利用复化求积公式,不断折半,用前后两次结果做差,如果精度满足要求则停止折半,故该方法又称折半求积公式。

例如: ∫ a b f ( x ) d x \int_a^bf(x)dx ∫abf(x)dx将[a,b]等分, h = b − a n , x k = a + k h h=\frac{b-a}{n},x_k=a+kh h=nb−a,xk=a+kh,

复化梯形公式 T 2 n = h 4 ∑ k = 0 n − 1 [ f ( x k ) + 2 f ( x k + 1 2 ) + f ( x k + 1 ) ] = T n 2 + h 2 ∑ k = 0 n − 1 f ( x k + 1 2 ) T_{2n}=\frac{h}{4}\sum_{k=0}^{n-1}[f(x_k)+2f(x_{k+\frac{1}{2}})+f(x_{k+1})]=\frac{T_n}{2}+\frac{h}{2}\sum_{k=0}^{n-1}f(x_{k+\frac{1}{2}}) T2n=4h∑k=0n−1[f(xk)+2f(xk+21)+f(xk+1)]=2Tn+2h∑k=0n−1f(xk+21)。

将已复化的梯形公式再折半步长应用复化公式,该公式实际上只需计算 x k + 1 2 x_{k+\frac{1}{2}} xk+21即新分节点的函数值。

应用中往往使用 ∣ t 2 k − T 2 k − 1 ∣ < ε |t_{2k}-T_{2k-1}|<\varepsilon ∣t2k−T2k−1∣<ε,前后两次变化之差来控制步长。

例题 :用变步长的梯形公式计算 I = ∫ 0 1 s i n x x d x I=\int^1_0\frac{sinx}{x}dx I=∫01xsinxdx

解:令 f ( x ) = s i n x x f(x)=\frac{sinx}{x} f(x)=xsinx,并补充定义 f ( 0 ) = 1 f(0)=1 f(0)=1使之连续, T 1 = 1 2 [ f ( 0 ) + f ( 1 ) ] ≈ 0.9207355 T_1=\frac{1}{2}[f(0)+f(1)]\approx0.9207355 T1=21[f(0)+f(1)]≈0.9207355
T 2 = 1 2 T 1 + 1 2 f ( 1 2 ) ≈ 0.9397933 T_2=\frac{1}{2}T_1+\frac{1}{2}f(\frac{1}{2})\approx0.9397933 T2=21T1+21f(21)≈0.9397933

使用该方法的计算量大,收敛慢,为了改进该问题,引入变步长的Romberg公式。

变步长的Romberg公式

其实就是Romberg的折半法,可视化展示如下:

公式计算方式如下:

  1. T 1 = b − a 2 [ f ( a ) + f ( b ) ] T_1=\frac{b-a}{2}[f(a)+f(b)] T1=2b−a[f(a)+f(b)]
  2. T 2 = T 1 2 + b − a 2 f ( a + b 2 ) T_2=\frac{T_1}{2}+\frac{b-a}{2}f(\frac{a+b}{2}) T2=2T1+2b−af(2a+b)
  3. S 1 = 4 3 T 2 − 1 3 T 1 S_1=\frac{4}{3}T_2-\frac{1}{3}T_1 S1=34T2−31T1
  4. T 4 = T 2 2 + b − a 4 [ f ( 3 a + b 4 ) + f ( 3 b + a 4 ) ] T_4=\frac{T_2}{2}+\frac{b-a}{4}[f(\frac{3a+b}{4})+f(\frac{3b+a}{4})] T4=2T2+4b−a[f(43a+b)+f(43b+a)]
  5. S 2 = 4 3 T 4 − 1 3 T 2 S_2=\frac{4}{3}T_4-\frac{1}{3}T_2 S2=34T4−31T2
  6. C 1 = 16 15 S 2 − 1 15 S 1 C_1=\frac{16}{15}S_2-\frac{1}{15}S_1 C1=1516S2−151S1
  7. T 8 = 1 2 T 4 + b − a 8 [ f ( 7 a + b 8 ) + f ( 5 a + 3 b 8 ) + f ( 5 b + 3 a 8 ) + f ( 3 b + a 2 ) ] T_8=\frac{1}{2}T_4+\frac{b-a}{8}[f(\frac{7a+b}{8})+f(\frac{5a+3b}{8})+f(\frac{5b+3a}{8})+f(\frac{3b+a}{2})] T8=21T4+8b−a[f(87a+b)+f(85a+3b)+f(85b+3a)+f(23b+a)]
  8. S 4 = 4 3 T 8 − 1 3 T 4 S_4=\frac{4}{3}T_8-\frac{1}{3}T4 S4=34T8−31T4
  9. C 2 = 16 15 S 4 − 1 15 S 2 C_2=\frac{16}{15}S_4-\frac{1}{15}S_2 C2=1516S4−151S2
  10. R 1 = 64 63 C 2 − 1 63 C 1 R_1=\frac{64}{63}C_2-\frac{1}{63}C_1 R1=6364C2−631C1

使用折半+外推法计算Romberg,T使用折半法迭代, S = 4 3 T k + 1 − 1 3 T k S=\frac{4}{3}T_{k+1}-\frac{1}{3}T_k S=34Tk+1−31Tk, C = 16 15 S k + 1 − 1 15 S k C=\frac{16}{15}S_{k+1}-\frac{1}{15}S_k C=1516Sk+1−151Sk, R = 64 63 C k + 1 − 1 63 C k R=\frac{64}{63}C_{k+1}-\frac{1}{63}C_{k} R=6364Ck+1−631Ck。

例题 :使用Romberg公式计算 ∫ 2 8 1 2 x d x \int_2^8\frac{1}{2x}dx ∫282x1dx,每步计算保留4位小数。

解:
T 1 = 8 − 2 2 [ f ( 8 ) + f ( 2 ) ] ≈ 0.9375 T_1=\frac{8-2}{2}[f(8)+f(2)]\approx0.9375 T1=28−2[f(8)+f(2)]≈0.9375
T 2 = T 1 2 + 8 − 2 2 f ( 5 ) ≈ 0.76875 T_2=\frac{T_1}{2}+\frac{8-2}{2}f(5)\approx0.76875 T2=2T1+28−2f(5)≈0.76875
S 1 = 4 3 T 2 − 1 3 T 1 = 0.7125 S_1=\frac{4}{3}T_2-\frac{1}{3}T_1=0.7125 S1=34T2−31T1=0.7125
T 4 = 1 2 T 2 + 8 − 2 4 [ f ( 3.5 ) + f ( 6.5 ) ] = 0.7140 T_4=\frac{1}{2}T_2+\frac{8-2}{4}[f(3.5)+f(6.5)]=0.7140 T4=21T2+48−2[f(3.5)+f(6.5)]=0.7140
S 2 = 4 3 T 4 + 1 3 T 2 = 0.6958 S_2=\frac{4}{3}T_4+\frac{1}{3}T_2=0.6958 S2=34T4+31T2=0.6958
C 1 = 16 15 S 2 − 1 15 S 1 = 0.6947 C_1=\frac{16}{15}S_2-\frac{1}{15}S_1=0.6947 C1=1516S2−151S1=0.6947
T 8 = 1 2 T 4 + 8 − 2 8 [ f ( 2.75 ) + f ( 4.25 ) + f ( 5.75 ) + f ( 7.25 ) ] = 0.6986 T_8=\frac{1}{2}T_4+\frac{8-2}{8}[f(2.75)+f(4.25)+f(5.75)+f(7.25)]=0.6986 T8=21T4+88−2[f(2.75)+f(4.25)+f(5.75)+f(7.25)]=0.6986
S 4 = 4 3 T 8 − 1 3 T 4 = 0.6934 S_4=\frac{4}{3}T_8-\frac{1}{3}T_4=0.6934 S4=34T8−31T4=0.6934
C 2 = 16 15 S 4 − 1 15 S 2 = 0.6932 C_2=\frac{16}{15}S_4-\frac{1}{15}S_2=0.6932 C2=1516S4−151S2=0.6932
R 1 = 64 63 C 2 − 1 63 C 1 = 0.6932 R_1=\frac{64}{63}C_2-\frac{1}{63}C_1=0.6932 R1=6364C2−631C1=0.6932

其他参考资料在此

总结

本章学习了如何利用迭代公式计算积分的近似值:

首先是使用数值积分矩形或梯形 来代替原有积分曲线的方法,并用自变量 x x x的次数作为代数精度衡量近似的程度。

然后是利用插值多项式 求和代替原积分曲线积分,其中点的取法用Newton-Cotes均匀选取。

最后为了计算迭代终点,采用变步长求积动态折半计算,不断逼近真实值,有基本的复化梯形公式 和加快迭代收敛速度的Romberg公式,Romberg计算方法最复杂,需要迭代四次计算,但收敛速度快,计算量也没那么大,可以说是计算数值积分最先进的方法。

相关推荐
Invulnerabl_DL1 分钟前
C++ STL学习
开发语言·c++·学习·stl
Remote Sensing2 分钟前
积分形式的辐射传输方程
算法·植被遥感·遥感·定量遥感·辐射传输方程·辐射传输
封印师请假去地球钓鱼1 小时前
AI大模型学习笔记|人工智能的发展历程、智能体的发展、机器学习与深度学习的基本理论
笔记·学习
C灿灿数模1 小时前
2023和2024历年美赛数学建模赛题,算法模型分析!
算法·数学建模
【上下求索】1 小时前
学习笔记067——若依前后端分离版本如何设置主从库
笔记·学习·若依·若依框架
lshzdq2 小时前
【机器人】控制之稳定性判定: 李雅普诺夫Lyapunov (2) 如何设计李(李雅普诺夫)函数
线性代数·算法·机器人
martian6652 小时前
深入详解人工智能机器学习常见算法——线性回归算法
人工智能·算法·机器学习·线性回归
java菜鸡加油2 小时前
代码随想录-算法训练营day56(动态规划17:回文子串,最长回文子序列,动态规划总结篇)
java·算法·leetcode·动态规划·力扣
电子绿洲2 小时前
深度解析:RTC电路上的32.768KHz时钟的频偏及测试
单片机·嵌入式硬件·学习·硬件工程·实时音视频·信息与通信·智能硬件
XiaoLeisj3 小时前
【优选算法 & 模拟】模拟算法入门详解 : 模拟算法小专题
数据结构·算法·leetcode·推荐算法