OpenCV识别图片颜色并绘制轮廓

一、原理

步骤

  • 读取图像
  • 将图像从 RGB 转换为 HSV 颜色空间
  • 根据设定的颜色范围进行掩模处理,得到目标颜色的区域。
  • 查找轮廓
  • 在原图上绘制轮廓

二、代码

python 复制代码
import cv2
import numpy as np

# 1输入图片
img=cv2.imread('./8.png')
img=cv2.resize(img,(0,0),fx=0.7,fy=0.7)

# 2识别颜色,转换HSV颜色空间
img_hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

# 3设定要识别的颜色范围,并利用inrange找到该范围
hsv_min=np.array([26,43,46])
hsv_max=np.array([34,255,255])
img_mask=cv2.inRange(img_hsv,hsv_min,hsv_max)

# 4进行滤波
img_median_blur=cv2.medianBlur(img_mask,3)

# 5 进行形态学变换,先腐蚀再膨胀
kernal=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
img_e=cv2.erode(img_median_blur,kernal)
img_d=cv2.dilate(img_e,kernal)

# 6 寻找轮廓
contours,hierarchy=cv2.findContours(
    img_d,
    cv2.RETR_LIST,
    cv2.CHAIN_APPROX_SIMPLE
                    )


# 7 for循环寻找轮廓,通过面积筛选出你想要的轮廓,绘制轮廓
img_copy = img.copy()
for i in contours:
    if 200<cv2.contourArea(i)<2000000:
        cv2.drawContours(img_copy,
                                    [i],
                                    0,
                                    (0, 0, 255),
                                    2
                                    )
    else:
        continue
# 8 输出图片
cv2.imshow('img',img_copy)
cv2.waitKey(0)

三、效果图

相关推荐
Warren2Lynch5 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale5 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant5 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138345 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo5 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms15 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑5 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei5 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing6 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
柔情的菜刀6 小时前
多源图像地面站
opencv