【电力负荷预测实例】采用新英格兰2024年最新电力负荷数据的BPNN神经网络电力负荷预测模型

本文采用新英格兰2024年最新电力负荷数据探讨了如何利用BP(Backpropagation)神经网络在MATLAB环境下进行短期电力负荷预测,并提供了一份完整的代码示例。

本文采用Matlab编写代码,代码注释详细,逻辑清晰易懂,数据采用excel表格形式便于替换数据集,可main函数一键运行。

电力负荷预测是电力系统运营和规划中的关键环节,它涉及到电力资源的有效分配和调度。BP神经网络因其强大的非线性建模能力,常被用于解决复杂预测问题。 我们要理解BP神经网络的基本原理。BP神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重,以最小化预测结果与实际值之间的误差。在电力负荷预测中,输入层通常包含历史负荷数据、时间序列信息和其他可能影响负荷的因素(如温度、湿度等)。隐藏层则用于学习和提取特征,而输出层则预测未来的电力负荷。

MATLAB作为强大的科学计算工具,提供了方便的神经网络构建和训练接口。"BPNN.m"是整个预测模型的核心代码,它包含了神经网络的搭建、训练和预测过程。使用了Levenberg-Marquardt(LM)算法,这是一种在BP网络训练中常用的优化方法,它结合了梯度下降法和牛顿法的优点,可以更有效地收敛。

神经网络模型的构建涉及设置网络结构(如输入节点、隐藏层节点和输出节点的数量)、激活函数(如sigmoid或tanh)和学习率。采用"newff"函数可以方便地创建神经网络,"train"函数进行训练,而"sim"函数用于预测。 在模型训练过程中,我们通常会监控训练误差和验证误差,以防止过拟合。

预测结果的评估指标是必不可少的,这包括计算均方误差(MSE)、决定系数(R^2)等指标,以了解模型的预测性能。如果模型性能不佳,可以尝试调整网络参数、增加数据集或采用其他预测方法(如SVM\RF\XGBOOST\DBN\CNN\LSTM\GRU\TRANSFORMER等)。

基于BP神经网络的电力负荷预测是一种简单实用的方法,但需要对数据、模型和算法有深入理解,才能构建出准确可靠的预测模型。MATLAB提供的工具和函数极大地简化了这一过程,使得研究者能够专注于模型的优化和改进。

数据集 采样时间间隔为1小时含有3647个最新监测数据,数据展示如下:

基于BP神经网络的电力负荷预测(采用2024新英格兰最新电力负荷数据实例)的程序运行效果展示:

相关推荐
羑悻的小杀马特31 分钟前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi4 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki4 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5896 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe6 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
Start_Present7 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
ZStack开发者社区7 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算