【Spark】Spark Join类型及Join实现方式

Spark\] Spark Join类型及Join实现方式 在Spark中,Join操作是-种常见的数据关联方式,主要有三种类型: 1. Inner Join: 内连接,只返回两个DataFrame中匹配的行。 2. Outer Join:外连接,返回两个DataFrame中匹配的行以及其中一个DataFrame中不匹 配的行,不匹配的地方用null填充。 Left Outer Join:左外连接,返回左DataFrame中的所有行, 以及右DataFrame中匹配 的行,不匹配的地方用nll填充。 Right Outer Join:右外连接,返回右DataFrame中的所有行,以及左DataFrame中匹 配的行,不匹配的地方用null填充。 Full Outer Join:全外连接,返回两个DataFrame中的所有行,不匹配的地方用null填 充。 3. Cross Join:交叉连接,返回两个DataFrame的笛卡尔积,即每一行都与另 -个DataFr ame中的每一行组合。 在Spark中,可以使用join 方法来实现这些Join类型。以下是使用Spark DataFrame API 实现这些Join的示例代码: import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("Join Example").getOrCreate() import spark.implicits._ // 创建示例数据 val df1 = Seq(("a", 1), ("b", 2)).toDF("key", "value") val df2 = Seq(("a", "x"), ("c", "y"), ("b", "z")).toDF("key", "value") // Inner Join val innerJoinResult = df1.join(df2, "key").show() // Left Outer Join val leftOuterJoinResult = df1.join(df2, "key", "left_outer").show() // Right Outer Join val rightOuterJoinResult = df1.join(df2, "key", "right_outer").show() // Full Outer Join val fullOuterJoinResult = df1.join(df2, "key", "full_outer").show() // Cross Join val crossJoinResult = df1.crossJoin(df2).show() 在这个例子中,df1和df2是两个DataFrame,我们通过调用join方法并传入相应的参数来实现不同类型的Join。"key"参数指定了用于Join的列。 请注意,在实际的生产代码中,DataFrame的创建和Join操作可能会更加复杂,包含更多的逻辑和优化。

相关推荐
Bug退退退12327 分钟前
RabbitMQ 高级特性之重试机制
java·分布式·spring·rabbitmq
武子康36 分钟前
大数据-33 HBase 整体架构 HMaster HRegion
大数据·后端·hbase
在肯德基吃麻辣烫2 小时前
《Redis》缓存与分布式锁
redis·分布式·缓存
亲爱的非洲野猪2 小时前
Kafka消息积压全面解决方案:从应急处理到系统优化
分布式·kafka
掘金-我是哪吒3 小时前
分布式微服务系统架构第157集:JavaPlus技术文档平台日更-Java多线程编程技巧
java·分布式·微服务·云原生·架构
掘金-我是哪吒3 小时前
分布式微服务系统架构第155集:JavaPlus技术文档平台日更-Java线程池实现原理
java·分布式·微服务·云原生·架构
Bug退退退12312 小时前
RabbitMQ 高级特性之死信队列
java·分布式·spring·rabbitmq
prince0513 小时前
Kafka 生产者和消费者高级用法
分布式·kafka·linq
诗旸的技术记录与分享14 小时前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
资讯分享周14 小时前
Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
大数据·gpt