排序算法(6):快速排序

问题

排序 [30, 24, 5, 58, 18, 36, 12, 42, 39]

快速排序

快速排序采用分治策略,首先从数组中选择一个元素作为基准元素。以基准元素为标准,将问题分解为两个子序列,使小于等于基准元素的子序列在左侧,大于基准元素的子序列在右侧。然后将两个子序列分别进行快速排序,将排序好的两个子序列合并在一起,完成排序。

图解

快速排序算法的重点是选择基准元素,并将其移动到正确的位置。

  1. 初始化第一个元素为基准元素,pivot = 30,i = low,j = high
  2. 从数组的右边位置向左找,一直找到小于 pivot 的元素 12,与基准元素交换位置,i += 1
  3. 从数组的左边位置向右找,一直找到大于 pivot 的元素 58,与基准元素交换位置,j -= 1
  4. 从数组的右边位置向左找,一直找到小于 pivot 的元素 18,交换位置,i += 1。此时 i = j,第一轮排序结束,返回 i 的位置,mid = i
  1. 完成第一轮排序之后,以 mid 为界,将原数据分为两个子序列,左侧子序列都比 pivot 小,右侧子序列都比 pivot 大,然后分别对两个子序列进行快速排序。

代码

py 复制代码
# 获取基准元素的正确位置
def partition(nums, low, high):
    pivot = nums[low]
    i, j = low, high

    while i < j:
        while i < j and nums[j] >= pivot:   # 从右向左找小于pivot的数,并交换位置
            j -= 1
        if i < j: 
        	nums[i], nums[j] = nums[j], nums[i]
        	i += 1
        while i < j and nums[i] <= pivot:   # 从左向右找大于pivot的数,并交换位置
            i += 1
        if i < j: 
        	nums[i], nums[j] = nums[j], nums[i]
        	j -= 1

    return i

def quick_sort(nums, low=0, high= len(nums)-1):
    if low < high:
        mid = partition(nums, low, high)
        quick_sort(nums, low, mid-1)
        quick_sort(nums, mid+1, high)

    return nums

时间复杂度

  • 快速排序最好的时间复杂度是 O(nlogn)

    最理想的情况下,每次划分将问题分解为两个规模都是 n/2 的子问题,递归求解

    递归最终规模为 1,令 2x = n,x = logn,那么

  • 快速排序最块的时间复杂度为 O(n2)

    在最坏的情况下,每次划分将问题分解后,基准元素的左侧或右侧没有元素,基准元素的另一侧为 1 个规模为 n-1 的子问题,递归求解

算法优化

在上述算法中,每次交换都是在和基准元素交换,但实际没必要这样做。只需要从右往左找到小于等于基准元素的数,再从左往右找到大于基准元素的数,将这两个数交换,一直交替进行,直到 i 和 j 碰头,这时将其和基准元素交换,这样就完成了一次划分过程。

  1. 首先取数组第一个元素为基准元素 pivot = 30

  2. 从数组的右边往左找,一直找到小于 pivot 的元素 12,从数组的左边往右找,一直找到大于 pivot 的元素 58,然后将它们交换位置

  3. 继续从数组的右边往左找,找到小于 pivot 的元素 18,从左往右找大于 pivot 直到 i = j 时停止

  4. 将基准元素和 i 位置的元素交换,返回 i 的位置 mid = i,第一轮排序结束

代码

py 复制代码
def partition(nums, low, high):
    pivot = nums[low]
    i, j = low, high

    while i < j:
        while i < j and nums[j] > pivot:
            j -= 1

        while i < j and nums[i] <= pivot:
            i += 1

        if i < j:
            nums[i], nums[j] = nums[j], nums[i]
            i += 1
            j -= 1

	if nums[i] > pivot:
		nums[i-1], nums[low] = nums[low], nums[i-1]
		return i-1

    nums[low], nums[i] = nums[i], nums[low]

    return i
相关推荐
PyHaVolask4 分钟前
数据结构与算法分析
数据结构·算法·图论
小王C语言5 分钟前
封装红黑树实现mymap和myset
linux·服务器·算法
大佬,救命!!!23 分钟前
算法实现迭代2_堆排序
数据结构·python·算法·学习笔记·堆排序
天桥下的卖艺者40 分钟前
R语言手搓一个计算生存分析C指数(C-index)的函数算法
c语言·算法·r语言
Espresso Macchiato1 小时前
Leetcode 3715. Sum of Perfect Square Ancestors
算法·leetcode·职场和发展·leetcode hard·树的遍历·leetcode 3715·leetcode周赛471
草莓熊Lotso1 小时前
《C++ Stack 与 Queue 完全使用指南:基础操作 + 经典场景 + 实战习题》
开发语言·c++·算法
敲上瘾1 小时前
单序列和双序列问题——动态规划
c++·算法·动态规划
太过平凡的小蚂蚁1 小时前
策略模式:让算法选择像点菜一样简单
算法·策略模式
科研小白_5 小时前
基于遗传算法优化BP神经网络(GA-BP)的数据时序预测
人工智能·算法·回归
Terry Cao 漕河泾5 小时前
基于dtw算法的动作、动态识别
算法