机器学习--张量

机器学习--张量

机器学习的数据结构--张量

张量是机器学习程序中的数字容器,本质上就是各种不同维度的数组,如下图所示。

张量的维度称为轴(axis),轴的个数称为阶(rank)

标量--0D张量

py 复制代码
import numpy as np #导入NumPy
X = np.array(5) # 创建0D张量,也就是标量
print("X的值",X)
print("X的阶",X.ndim) #ndim属性显示张量轴的个数
print("X的数据类型",X.dtype) # dtype属性显示张量数据类型
print("X的形状",X.shape) # shape属性显示张量形状

向量--1D张量

由一组数字组成的数组叫作向量(vector),也就是一阶张量

py 复制代码
X = np.array([5,6,7,8,9]) #创建1D张量,也就是向量
print("X的值",X)
print("X的阶",X.ndim) #ndim属性显示张量轴的个数
print("X的形状",X.shape) # shape属性显示张量形状

(5,)表示一个1D张量,元素数量是5,也就是5维向量。

矩阵--2D张量

矩阵是2D张量,形状为 (样本,特征)。第一个轴是样本轴,第二个轴是特征轴。

序列数据--3D张量

时序数据集的形状为3D张量:(样本,时戳,标签)

图像数据--4D张量

图像数据集其形状为(样本,图像高,图像宽度,颜色深度),如MNIST特征数据集的形状为 (60000,28,28,1)。

比如指定批量大小为64。此时每批的100px×100px的彩色图像张量形状为(64, 100,100,3),如果是灰度图像,则为(64,100,100,1)

视频数据--5D张量

其形状为(样本,帧,高度,宽度,颜色深度)

张量的创建和访问

py 复制代码
array_04=np.arange(1,5,1) # 通过arange函数生成数组
array_05=np.linspace(1,5,5) # 通过linspace函数生成数组
print (array_04)
print (array_05)

arange(a,b,c)函数产生a~b(不包括b),间隔为c;

linspace(a,b, c)函数是把a~b(包括b),平均分成c份。

索引(indexing)和切片(slicing)这两种方式访问张量

py 复制代码
array_06 = np.arange(10)
print (array_06)
index_01 = array_06[3] # 索引-第4个元素
print ('第4个元素', index_01)
index_02 = array_06[-1] # 索引-最后一个元素
print ('第-1个元素', index_02)
slice_01 = array_06[:4] # 从0到4切片
print ('从0到4切片', slice_01)
slice_02 = array_06[0:12:4] # 从0到12切片,步长为2
print ('从0到12切片,步长为4', slice_02)
相关推荐
Hello.Reader1 分钟前
Flink ML KNN 入门基于 Table API 的近邻分类
机器学习·分类·flink
用户8599681677692 分钟前
极客时间 PostgreSQL 进阶训练营(完结)
人工智能
大厂技术总监下海6 分钟前
每日 1000 亿 Token 流量,开源 AI 网关 Portkey 如何打通 250+ 模型?
人工智能·开源
然麦7 分钟前
我的dify被精准攻击了(CVE-2025-55182)
人工智能·react.js
袋鼠云数栈10 分钟前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
还是大剑师兰特12 分钟前
Lighthouse + AI 给出性能优化方案
人工智能·性能优化
CAN117713 分钟前
快速还原设计稿之工作流集成方案
前端·人工智能
山海青风41 分钟前
人工智能基础与应用 - 数据处理、建模与预测流程 7 基础模型之回归模型
人工智能·数据挖掘·回归
香蕉君1 小时前
第一品——LangChain核心基础
人工智能·langchain
GEO AI搜索优化助手1 小时前
生成式AI如何重塑搜索生态与用户体验
人工智能·生成式引擎优化·ai优化·geo搜索优化