机器学习--张量

机器学习--张量

机器学习的数据结构--张量

张量是机器学习程序中的数字容器,本质上就是各种不同维度的数组,如下图所示。

张量的维度称为轴(axis),轴的个数称为阶(rank)

标量--0D张量

py 复制代码
import numpy as np #导入NumPy
X = np.array(5) # 创建0D张量,也就是标量
print("X的值",X)
print("X的阶",X.ndim) #ndim属性显示张量轴的个数
print("X的数据类型",X.dtype) # dtype属性显示张量数据类型
print("X的形状",X.shape) # shape属性显示张量形状

向量--1D张量

由一组数字组成的数组叫作向量(vector),也就是一阶张量

py 复制代码
X = np.array([5,6,7,8,9]) #创建1D张量,也就是向量
print("X的值",X)
print("X的阶",X.ndim) #ndim属性显示张量轴的个数
print("X的形状",X.shape) # shape属性显示张量形状

(5,)表示一个1D张量,元素数量是5,也就是5维向量。

矩阵--2D张量

矩阵是2D张量,形状为 (样本,特征)。第一个轴是样本轴,第二个轴是特征轴。

序列数据--3D张量

时序数据集的形状为3D张量:(样本,时戳,标签)

图像数据--4D张量

图像数据集其形状为(样本,图像高,图像宽度,颜色深度),如MNIST特征数据集的形状为 (60000,28,28,1)。

比如指定批量大小为64。此时每批的100px×100px的彩色图像张量形状为(64, 100,100,3),如果是灰度图像,则为(64,100,100,1)

视频数据--5D张量

其形状为(样本,帧,高度,宽度,颜色深度)

张量的创建和访问

py 复制代码
array_04=np.arange(1,5,1) # 通过arange函数生成数组
array_05=np.linspace(1,5,5) # 通过linspace函数生成数组
print (array_04)
print (array_05)

arange(a,b,c)函数产生a~b(不包括b),间隔为c;

linspace(a,b, c)函数是把a~b(包括b),平均分成c份。

索引(indexing)和切片(slicing)这两种方式访问张量

py 复制代码
array_06 = np.arange(10)
print (array_06)
index_01 = array_06[3] # 索引-第4个元素
print ('第4个元素', index_01)
index_02 = array_06[-1] # 索引-最后一个元素
print ('第-1个元素', index_02)
slice_01 = array_06[:4] # 从0到4切片
print ('从0到4切片', slice_01)
slice_02 = array_06[0:12:4] # 从0到12切片,步长为2
print ('从0到12切片,步长为4', slice_02)
相关推荐
一 铭26 分钟前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域6 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技6 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎7 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎7 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊7 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪