- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
本周任务:
- 探索ResNet和DenseNet的结合可能性
- 本周任务较难,我们在chatGPT的帮助下完成
一、网络的构建
设计一种结合 ResNet 和 DenseNet 的网络架构,目标是在性能与复杂度之间实现平衡,同时保持与 DenseNet-121 相当的训练速度,可以通过以下步骤设计一种新的网络结构,称为 ResDenseNet(暂命名)。这种网络结构结合了 ResNet 的残差连接和 DenseNet 的密集连接优点,同时对复杂度加以控制。
设计思路
残差模块与密集模块结合:
在网络的不同阶段,使用残差模块(ResBlock)来捕获浅层特征。
在每个阶段的后期引入密集模块(DenseBlock),实现高效的特征复用。
通过调整每层的通道数,避免过多的计算和内存消耗。
瓶颈设计(Bottleneck Block):
每个模块采用瓶颈层,减少计算复杂度。
通过 1x1 卷积压缩和扩展特征通道数。
混合连接方式:
引入 局部密集连接,只连接同一模块内的层,避免 DenseNet 的全连接导致的内存开销。
在模块之间使用残差连接,便于信息流通。
网络深度与宽度的平衡:
将 DenseNet 的增长率(growth rate)减少,适当减少特征图通道数增长。
模块之间引入过渡层(Transition Layer)以压缩特征图尺寸和通道数。
python
import torch
import torch.nn as nn
class Bottleneck(nn.Module):
def __init__(self, in_channels, growth_rate):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv1 = nn.Conv2d(in_channels, 4 * growth_rate, kernel_size=1, stride=1, bias=False)
self.bn2 = nn.BatchNorm2d(4 * growth_rate)
self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
def forward(self, x):
out = self.conv1(self.bn1(x))
out = self.conv2(self.bn2(out))
return torch.cat([x, out], dim=1)
class DenseBlock(nn.Module):
def __init__(self, num_layers, in_channels, growth_rate):
super(DenseBlock, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(Bottleneck(in_channels + i * growth_rate, growth_rate))
# 为了残差连接,可能需要调整通道数以匹配输入输出
self.residual = nn.Conv2d(in_channels, in_channels + num_layers * growth_rate, kernel_size=1, bias=False)
def forward(self, x):
identity = self.residual(x) # 将输入调整为与 DenseBlock 输出通道一致
for layer in self.layers:
x = layer(x) # 密集连接,逐层拼接
return x + identity # 残差连接:输入与输出相加
class TransitionLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(TransitionLayer, self).__init__()
self.bn = nn.BatchNorm2d(in_channels)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv(self.bn(x))
return self.pool(x)
class ResDenseNet(nn.Module):
def __init__(self, num_classes=1000):
super(ResDenseNet, self).__init__()
self.stem = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.stage1 = self._make_stage(64, 128, num_layers=4, growth_rate=16)
self.stage2 = self._make_stage(128, 256, num_layers=4, growth_rate=16)
self.stage3 = self._make_stage(256, 512, num_layers=6, growth_rate=12)
self.stage4 = self._make_stage(512, 1024, num_layers=6, growth_rate=12)
self.classifier = nn.Linear(1024, num_classes)
def _make_stage(self, in_channels, out_channels, num_layers, growth_rate):
dense_block = DenseBlock(num_layers, in_channels, growth_rate)
transition = TransitionLayer(in_channels + num_layers * growth_rate, out_channels)
return nn.Sequential(dense_block, transition)
def forward(self, x):
x = self.stem(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = torch.mean(x, dim=[2, 3]) # Global Average Pooling
return self.classifier(x)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResDenseNet().to(device)
model
代码输出:
python
ResDenseNet(
(stem): Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
)
(stage1): Sequential(
(0): DenseBlock(
(layers): ModuleList(
(0): Bottleneck(
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(1): Bottleneck(
(bn1): BatchNorm2d(80, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(80, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(2): Bottleneck(
(bn1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(96, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(3): Bottleneck(
(bn1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(112, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(residual): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(1): TransitionLayer(
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
)
(stage2): Sequential(
(0): DenseBlock(
(layers): ModuleList(
(0): Bottleneck(
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(1): Bottleneck(
(bn1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(144, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(2): Bottleneck(
(bn1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(160, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(3): Bottleneck(
(bn1): BatchNorm2d(176, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(176, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(residual): Conv2d(128, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(1): TransitionLayer(
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv): Conv2d(192, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
)
(stage3): Sequential(
(0): DenseBlock(
(layers): ModuleList(
(0): Bottleneck(
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(1): Bottleneck(
(bn1): BatchNorm2d(268, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(268, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(2): Bottleneck(
(bn1): BatchNorm2d(280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(280, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(3): Bottleneck(
(bn1): BatchNorm2d(292, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(292, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(4): Bottleneck(
(bn1): BatchNorm2d(304, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(304, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(5): Bottleneck(
(bn1): BatchNorm2d(316, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(316, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(residual): Conv2d(256, 328, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(1): TransitionLayer(
(bn): BatchNorm2d(328, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv): Conv2d(328, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
)
(stage4): Sequential(
(0): DenseBlock(
(layers): ModuleList(
(0): Bottleneck(
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(512, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(1): Bottleneck(
(bn1): BatchNorm2d(524, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(524, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(2): Bottleneck(
(bn1): BatchNorm2d(536, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(536, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(3): Bottleneck(
(bn1): BatchNorm2d(548, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(548, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(4): Bottleneck(
(bn1): BatchNorm2d(560, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(560, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(5): Bottleneck(
(bn1): BatchNorm2d(572, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv1): Conv2d(572, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(48, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
)
(residual): Conv2d(512, 584, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(1): TransitionLayer(
(bn): BatchNorm2d(584, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv): Conv2d(584, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
)
(classifier): Linear(in_features=1024, out_features=1000, bias=True)
)
代码输入:
python
import torchsummary as summary
summary.summary(model, (3, 224, 224))
代码输出:
python
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 112, 112] 9,408
BatchNorm2d-2 [-1, 64, 112, 112] 128
ReLU-3 [-1, 64, 112, 112] 0
MaxPool2d-4 [-1, 64, 56, 56] 0
Conv2d-5 [-1, 128, 56, 56] 8,192
BatchNorm2d-6 [-1, 64, 56, 56] 128
Conv2d-7 [-1, 64, 56, 56] 4,096
BatchNorm2d-8 [-1, 64, 56, 56] 128
Conv2d-9 [-1, 16, 56, 56] 9,216
Bottleneck-10 [-1, 80, 56, 56] 0
BatchNorm2d-11 [-1, 80, 56, 56] 160
Conv2d-12 [-1, 64, 56, 56] 5,120
BatchNorm2d-13 [-1, 64, 56, 56] 128
Conv2d-14 [-1, 16, 56, 56] 9,216
Bottleneck-15 [-1, 96, 56, 56] 0
BatchNorm2d-16 [-1, 96, 56, 56] 192
Conv2d-17 [-1, 64, 56, 56] 6,144
BatchNorm2d-18 [-1, 64, 56, 56] 128
Conv2d-19 [-1, 16, 56, 56] 9,216
Bottleneck-20 [-1, 112, 56, 56] 0
BatchNorm2d-21 [-1, 112, 56, 56] 224
Conv2d-22 [-1, 64, 56, 56] 7,168
BatchNorm2d-23 [-1, 64, 56, 56] 128
Conv2d-24 [-1, 16, 56, 56] 9,216
Bottleneck-25 [-1, 128, 56, 56] 0
DenseBlock-26 [-1, 128, 56, 56] 0
BatchNorm2d-27 [-1, 128, 56, 56] 256
Conv2d-28 [-1, 128, 56, 56] 16,384
AvgPool2d-29 [-1, 128, 28, 28] 0
TransitionLayer-30 [-1, 128, 28, 28] 0
Conv2d-31 [-1, 192, 28, 28] 24,576
BatchNorm2d-32 [-1, 128, 28, 28] 256
Conv2d-33 [-1, 64, 28, 28] 8,192
BatchNorm2d-34 [-1, 64, 28, 28] 128
Conv2d-35 [-1, 16, 28, 28] 9,216
Bottleneck-36 [-1, 144, 28, 28] 0
BatchNorm2d-37 [-1, 144, 28, 28] 288
Conv2d-38 [-1, 64, 28, 28] 9,216
BatchNorm2d-39 [-1, 64, 28, 28] 128
Conv2d-40 [-1, 16, 28, 28] 9,216
Bottleneck-41 [-1, 160, 28, 28] 0
BatchNorm2d-42 [-1, 160, 28, 28] 320
Conv2d-43 [-1, 64, 28, 28] 10,240
BatchNorm2d-44 [-1, 64, 28, 28] 128
Conv2d-45 [-1, 16, 28, 28] 9,216
Bottleneck-46 [-1, 176, 28, 28] 0
BatchNorm2d-47 [-1, 176, 28, 28] 352
Conv2d-48 [-1, 64, 28, 28] 11,264
BatchNorm2d-49 [-1, 64, 28, 28] 128
Conv2d-50 [-1, 16, 28, 28] 9,216
Bottleneck-51 [-1, 192, 28, 28] 0
DenseBlock-52 [-1, 192, 28, 28] 0
BatchNorm2d-53 [-1, 192, 28, 28] 384
Conv2d-54 [-1, 256, 28, 28] 49,152
AvgPool2d-55 [-1, 256, 14, 14] 0
TransitionLayer-56 [-1, 256, 14, 14] 0
Conv2d-57 [-1, 328, 14, 14] 83,968
BatchNorm2d-58 [-1, 256, 14, 14] 512
Conv2d-59 [-1, 48, 14, 14] 12,288
BatchNorm2d-60 [-1, 48, 14, 14] 96
Conv2d-61 [-1, 12, 14, 14] 5,184
Bottleneck-62 [-1, 268, 14, 14] 0
BatchNorm2d-63 [-1, 268, 14, 14] 536
Conv2d-64 [-1, 48, 14, 14] 12,864
BatchNorm2d-65 [-1, 48, 14, 14] 96
Conv2d-66 [-1, 12, 14, 14] 5,184
Bottleneck-67 [-1, 280, 14, 14] 0
BatchNorm2d-68 [-1, 280, 14, 14] 560
Conv2d-69 [-1, 48, 14, 14] 13,440
BatchNorm2d-70 [-1, 48, 14, 14] 96
Conv2d-71 [-1, 12, 14, 14] 5,184
Bottleneck-72 [-1, 292, 14, 14] 0
BatchNorm2d-73 [-1, 292, 14, 14] 584
Conv2d-74 [-1, 48, 14, 14] 14,016
BatchNorm2d-75 [-1, 48, 14, 14] 96
Conv2d-76 [-1, 12, 14, 14] 5,184
Bottleneck-77 [-1, 304, 14, 14] 0
BatchNorm2d-78 [-1, 304, 14, 14] 608
Conv2d-79 [-1, 48, 14, 14] 14,592
BatchNorm2d-80 [-1, 48, 14, 14] 96
Conv2d-81 [-1, 12, 14, 14] 5,184
Bottleneck-82 [-1, 316, 14, 14] 0
BatchNorm2d-83 [-1, 316, 14, 14] 632
Conv2d-84 [-1, 48, 14, 14] 15,168
BatchNorm2d-85 [-1, 48, 14, 14] 96
Conv2d-86 [-1, 12, 14, 14] 5,184
Bottleneck-87 [-1, 328, 14, 14] 0
DenseBlock-88 [-1, 328, 14, 14] 0
BatchNorm2d-89 [-1, 328, 14, 14] 656
Conv2d-90 [-1, 512, 14, 14] 167,936
AvgPool2d-91 [-1, 512, 7, 7] 0
TransitionLayer-92 [-1, 512, 7, 7] 0
Conv2d-93 [-1, 584, 7, 7] 299,008
BatchNorm2d-94 [-1, 512, 7, 7] 1,024
Conv2d-95 [-1, 48, 7, 7] 24,576
BatchNorm2d-96 [-1, 48, 7, 7] 96
Conv2d-97 [-1, 12, 7, 7] 5,184
Bottleneck-98 [-1, 524, 7, 7] 0
BatchNorm2d-99 [-1, 524, 7, 7] 1,048
Conv2d-100 [-1, 48, 7, 7] 25,152
BatchNorm2d-101 [-1, 48, 7, 7] 96
Conv2d-102 [-1, 12, 7, 7] 5,184
Bottleneck-103 [-1, 536, 7, 7] 0
BatchNorm2d-104 [-1, 536, 7, 7] 1,072
Conv2d-105 [-1, 48, 7, 7] 25,728
BatchNorm2d-106 [-1, 48, 7, 7] 96
Conv2d-107 [-1, 12, 7, 7] 5,184
Bottleneck-108 [-1, 548, 7, 7] 0
BatchNorm2d-109 [-1, 548, 7, 7] 1,096
Conv2d-110 [-1, 48, 7, 7] 26,304
BatchNorm2d-111 [-1, 48, 7, 7] 96
Conv2d-112 [-1, 12, 7, 7] 5,184
Bottleneck-113 [-1, 560, 7, 7] 0
BatchNorm2d-114 [-1, 560, 7, 7] 1,120
Conv2d-115 [-1, 48, 7, 7] 26,880
BatchNorm2d-116 [-1, 48, 7, 7] 96
Conv2d-117 [-1, 12, 7, 7] 5,184
Bottleneck-118 [-1, 572, 7, 7] 0
BatchNorm2d-119 [-1, 572, 7, 7] 1,144
Conv2d-120 [-1, 48, 7, 7] 27,456
BatchNorm2d-121 [-1, 48, 7, 7] 96
Conv2d-122 [-1, 12, 7, 7] 5,184
Bottleneck-123 [-1, 584, 7, 7] 0
DenseBlock-124 [-1, 584, 7, 7] 0
BatchNorm2d-125 [-1, 584, 7, 7] 1,168
Conv2d-126 [-1, 1024, 7, 7] 598,016
AvgPool2d-127 [-1, 1024, 3, 3] 0
TransitionLayer-128 [-1, 1024, 3, 3] 0
Linear-129 [-1, 1000] 1,025,000
================================================================
Total params: 2,734,104
Trainable params: 2,734,104
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 95.40
Params size (MB): 10.43
Estimated Total Size (MB): 106.41
----------------------------------------------------------------
接下来我们简单阅读我们构建的网络:
- 首先我们构建Bottleneck,bottleneck的主要目的是构建denseblock的组成部分,通过两次归一化层以及两次卷积构成
- 随后我们构建Denseblock,并且使用残差连接
- 构建transition层进行池化,最终能够全连接
- 整体网络构建如下:
python
Input (224x224x3)
|
| Conv2d (7x7, stride=2)
| BatchNorm2d
| ReLU
| MaxPool2d (3x3, stride=2)
v
Stem Layer (64 channels)
|
v
Stage 1: DenseBlock + TransitionLayer (64 -> 128 channels)
|
v
Stage 2: DenseBlock + TransitionLayer (128 -> 256 channels)
|
v
Stage 3: DenseBlock + TransitionLayer (256 -> 512 channels)
|
v
Stage 4: DenseBlock + TransitionLayer (512 -> 1024 channels)
|
v
Global Average Pooling (1024x1x1)
|
v
Fully Connected Layer (1024 -> num_classes)
|
v
Output (num_classes)
二、对上周的乳腺癌识别
python
import pathlib
data_dir = './data/J3-1-data'
data_dir = pathlib.Path(data_dir)
data_path = list(data_dir.glob('*'))
classNames = [path.name for path in data_path]
print(classNames)
代码输出:
python
['0', '1']
python
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
train_transforms = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
total_data = datasets.ImageFolder(data_dir, transform=train_transforms)
total_data
代码输出:
python
Dataset ImageFolder
Number of datapoints: 13403
Root location: data\J3-1-data
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
python
train_size = int(0.7 * len(total_data))
remain_size = len(total_data) - train_size
train_dataset, remain_dataset = torch.utils.data.random_split(total_data, [train_size, remain_size])
test_size = int(0.6 * len(remain_dataset))
validate_size = len(remain_dataset) - test_size
test_dataset, validate_dataset = torch.utils.data.random_split(remain_dataset, [test_size, validate_size]) #随机分配数据
train_dataset, test_dataset, validate_dataset
代码输出:
python
(<torch.utils.data.dataset.Subset at 0x2138402dbb0>,
<torch.utils.data.dataset.Subset at 0x21383feb590>,
<torch.utils.data.dataset.Subset at 0x21383ece690>)
python
batch_size = 32
train_dl = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True)
test_dl = DataLoader(
test_dataset,
batch_size = batch_size,
shuffle = True
)
validate_dl = DataLoader(
validate_dataset,
batch_size = batch_size,
shuffle = False
)
for x, y in validate_dl:
print("shape of x [N, C, H, W]:", x.shape)
print("shape of y:", y.shape, y.dtype)
break
代码输出:
python
shape of x [N, C, H, W]: torch.Size([32, 3, 224, 224])
shape of y: torch.Size([32]) torch.int64
python
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss, train_acc = 0, 0
for x, y in dataloader:
x, y = x.to(device), y.to(device)
pred = model(x)
loss = loss_fn(pred, y)
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, test_acc = 0, 0
for x, y in dataloader:
x, y = x.to(device), y.to(device)
pred = model(x)
loss = loss_fn(pred, y)
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss += loss.item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
训练:
python
import copy
from torch.optim.lr_scheduler import ReduceLROnPlateau
opt = torch.optim.Adam(model.parameters(), lr= 1e-4)
scheduler = ReduceLROnPlateau(opt, mode='min', factor=0.1, patience=5, verbose=True) # 当指标(如损失)连续 5 次没有改善时,将学习率乘以 0.1
loss_fn = nn.CrossEntropyLoss() # 交叉熵
epochs = 32
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
scheduler.step(epoch_test_loss)
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = opt.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型到文件中
PATH = './best_model.pth' # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)
print('Done')
代码输出:
python
Epoch: 1, Train_acc:80.7%, Train_loss:0.892, Test_acc:71.2%, Test_loss:1.992, Lr:1.00E-04
Epoch: 2, Train_acc:82.5%, Train_loss:0.409, Test_acc:83.9%, Test_loss:0.393, Lr:1.00E-04
Epoch: 3, Train_acc:83.4%, Train_loss:0.395, Test_acc:82.8%, Test_loss:0.443, Lr:1.00E-04
Epoch: 4, Train_acc:83.8%, Train_loss:0.380, Test_acc:84.1%, Test_loss:0.378, Lr:1.00E-04
Epoch: 5, Train_acc:84.2%, Train_loss:0.375, Test_acc:54.6%, Test_loss:1.337, Lr:1.00E-04
Epoch: 6, Train_acc:84.2%, Train_loss:0.378, Test_acc:84.7%, Test_loss:0.354, Lr:1.00E-04
Epoch: 7, Train_acc:84.7%, Train_loss:0.368, Test_acc:64.4%, Test_loss:0.696, Lr:1.00E-04
Epoch: 8, Train_acc:84.9%, Train_loss:0.360, Test_acc:84.7%, Test_loss:0.493, Lr:1.00E-04
Epoch: 9, Train_acc:85.1%, Train_loss:0.362, Test_acc:73.7%, Test_loss:0.506, Lr:1.00E-04
Epoch:10, Train_acc:85.2%, Train_loss:0.350, Test_acc:77.3%, Test_loss:0.791, Lr:1.00E-04
Epoch:11, Train_acc:85.5%, Train_loss:0.352, Test_acc:53.7%, Test_loss:2.223, Lr:1.00E-04
Epoch:12, Train_acc:85.6%, Train_loss:0.351, Test_acc:84.5%, Test_loss:0.438, Lr:1.00E-05
Epoch:13, Train_acc:86.7%, Train_loss:0.321, Test_acc:87.4%, Test_loss:0.295, Lr:1.00E-05
Epoch:14, Train_acc:86.5%, Train_loss:0.314, Test_acc:87.3%, Test_loss:0.296, Lr:1.00E-05
Epoch:15, Train_acc:87.2%, Train_loss:0.310, Test_acc:87.1%, Test_loss:0.320, Lr:1.00E-05
Epoch:16, Train_acc:87.6%, Train_loss:0.307, Test_acc:87.2%, Test_loss:0.297, Lr:1.00E-05
Epoch:17, Train_acc:87.4%, Train_loss:0.309, Test_acc:88.2%, Test_loss:0.289, Lr:1.00E-05
Epoch:18, Train_acc:87.0%, Train_loss:0.310, Test_acc:87.6%, Test_loss:0.293, Lr:1.00E-05
Epoch:19, Train_acc:87.1%, Train_loss:0.305, Test_acc:88.3%, Test_loss:0.281, Lr:1.00E-05
Epoch:20, Train_acc:87.6%, Train_loss:0.298, Test_acc:87.6%, Test_loss:0.299, Lr:1.00E-05
Epoch:21, Train_acc:87.5%, Train_loss:0.299, Test_acc:87.9%, Test_loss:0.289, Lr:1.00E-05
Epoch:22, Train_acc:87.5%, Train_loss:0.299, Test_acc:88.3%, Test_loss:0.292, Lr:1.00E-05
Epoch:23, Train_acc:88.0%, Train_loss:0.296, Test_acc:86.4%, Test_loss:0.347, Lr:1.00E-05
Epoch:24, Train_acc:87.7%, Train_loss:0.299, Test_acc:88.1%, Test_loss:0.286, Lr:1.00E-05
Epoch:25, Train_acc:87.8%, Train_loss:0.294, Test_acc:86.4%, Test_loss:0.327, Lr:1.00E-06
Epoch:26, Train_acc:87.9%, Train_loss:0.290, Test_acc:87.5%, Test_loss:0.291, Lr:1.00E-06
Epoch:27, Train_acc:88.2%, Train_loss:0.286, Test_acc:88.9%, Test_loss:0.272, Lr:1.00E-06
Epoch:28, Train_acc:88.1%, Train_loss:0.287, Test_acc:88.6%, Test_loss:0.277, Lr:1.00E-06
Epoch:29, Train_acc:88.2%, Train_loss:0.286, Test_acc:89.4%, Test_loss:0.269, Lr:1.00E-06
Epoch:30, Train_acc:88.1%, Train_loss:0.285, Test_acc:89.1%, Test_loss:0.271, Lr:1.00E-06
Epoch:31, Train_acc:88.1%, Train_loss:0.288, Test_acc:88.9%, Test_loss:0.274, Lr:1.00E-06
Epoch:32, Train_acc:87.9%, Train_loss:0.291, Test_acc:89.1%, Test_loss:0.275, Lr:1.00E-06
Done
结果上看不如上次的DenseNet121
结果可视化:
python
import matplotlib.pyplot as plt
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
代码输出:
对验证集的准确率:
python
def validate(dataloader, model):
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
validate_acc = 0
for x, y in dataloader:
x, y = x.to(device), y.to(device)
pred = model(x)
validate_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
validate_acc /= size
return validate_acc
# 计算验证集准确率
validate_acc = validate(validate_dl, best_model)
print(f"Validation Accuracy: {validate_acc:.2%}")
代码输出:
python
Validation Accuracy: 89.37%
达到89.4%
三、总结
这次的结合主要是在和GPT一起完成的,主要是简单的结合,看到很多人说文献中报道过DPN结构,我待会儿也会去看看。