注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

目录

效果一览







基本介绍

1.Matlab实现LSTM-Attention-Adaboost时间序列预测,长短期记忆神经网络注意力机制结合AdaBoost多变量时间序列预测;注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量负荷预测;

LSTM-Attention-AdaBoost是一种将LSTM-Attention和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。LSTM-Attention-AdaBoost算法的基本思想是将LSTM-Attention作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个LSTM-Attention模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2023b;

3.data为数据集,excel数据,多输入单输出时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价;

程序设计

  • 完整程序和数据获取方式私信博主回复组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测(Matlab)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺

for i = 1:size(P_train,2)
    trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
end

for i = 1:size(p_test,2)
    testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
end


targetD =  t_train;
targetD_test  =  t_test;

numFeatures = size(p_train,1);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关推荐
(; ̄ェ ̄)。42 分钟前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
啊阿狸不会拉杆7 天前
《机器学习》完结篇-总结
人工智能·算法·机器学习·计算机视觉·ai·集成学习·ml
UR的出不克8 天前
基于Stacking集成学习的乙型肝炎预测模型:从数据到部署的完整实践
人工智能·机器学习·集成学习
啊阿狸不会拉杆10 天前
《机器学习》第五章-集成学习(Bagging/Boosting)
人工智能·算法·机器学习·计算机视觉·集成学习·boosting
Das111 天前
【机器学习】06_集成学习
人工智能·机器学习·集成学习
python机器学习ML11 天前
机器学习——16种模型(基础+集成学习)+多角度SHAP高级可视化+Streamlit交互式应用+RFE特征选择+Optuna+完整项目
人工智能·python·机器学习·分类·数据挖掘·scikit-learn·集成学习
qq_3814549916 天前
集成学习:机器学习中的群体智慧
集成学习
向量引擎小橙16 天前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
向量引擎小橙19 天前
智能体“组团”时代:通信协议标准化如何颠覆未来协作模式?
大数据·人工智能·深度学习·集成学习
万行19 天前
机器学习&第六.七章决策树,集成学习
人工智能·python·算法·决策树·机器学习·集成学习