注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测

目录

效果一览







基本介绍

1.Matlab实现LSTM-Attention-Adaboost时间序列预测,长短期记忆神经网络注意力机制结合AdaBoost多变量时间序列预测;注意力机制+时空特征融合!组合模型集成学习预测!LSTM-Attention-Adaboost多变量负荷预测;

LSTM-Attention-AdaBoost是一种将LSTM-Attention和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。LSTM-Attention-AdaBoost算法的基本思想是将LSTM-Attention作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个LSTM-Attention模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2023b;

3.data为数据集,excel数据,多输入单输出时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价;

程序设计

  • 完整程序和数据获取方式私信博主回复组合模型集成学习预测!LSTM-Attention-Adaboost多变量时序预测(Matlab)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺

for i = 1:size(P_train,2)
    trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
end

for i = 1:size(p_test,2)
    testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
end


targetD =  t_train;
targetD_test  =  t_test;

numFeatures = size(p_train,1);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217

[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关推荐
yuanbenshidiaos5 天前
【大数据】机器学习----------集成学习
大数据·机器学习·集成学习
pzx_0018 天前
【深度学习】神经网络灾难性遗忘(Catastrophic Forgetting,CF)问题
人工智能·深度学习·神经网络·集成学习
pzx_0018 天前
【论文阅读】基于空间相关性与Stacking集成学习的风电功率预测方法
论文阅读·人工智能·算法·机器学习·bootstrap·集成学习
pzx_0018 天前
【集成学习】Stacking算法详解
人工智能·算法·leetcode·机器学习·职场和发展·集成学习
pzx_00112 天前
【深度学习】通俗理解偏差(Bias)与方差(Variance)
人工智能·python·深度学习·算法·机器学习·集成学习
pzx_00113 天前
【集成学习】Boosting算法详解
人工智能·python·深度学习·算法·机器学习·集成学习·boosting
湫ccc14 天前
《机器学习》集成学习之随机森林
随机森林·机器学习·集成学习
pzx_00114 天前
【集成学习】Bagging算法详解及代码实现
python·算法·机器学习·集成学习
pzx_00115 天前
【集成学习】Bootstrap抽样
人工智能·深度学习·算法·leetcode·机器学习·bootstrap·集成学习
Allen_LVyingbo15 天前
英伟达 RTX 5090 显卡赋能医疗大模型:变革、挑战与展望
数据分析·健康医疗·集成学习