自然语言处理:我的学习心得与笔记

Pytorch

1.Pytorch基本语法

1.1 认识Pytorch

1.2 Pytorch中的autograd

2.Pytorch初步应用

2.1 使用Pytorch构建一个神经网络

2.2 使用Pytorch构建一个分类器

小节总结

学习了什么是Pytorch.

。Pytorch是一个基于Numpy的科学计算包,作为Numpy的替代者,向用户提供使用GPU强大功能的能力.

做为一款深度学习的平台,向用户提供最大的灵活性和速度。学习了Pytorch的基本元素操作

·矩阵的初始化:

.torch.empty()

torch.rand(n, m)

*torch.zeros(n,m,dtype=torch.long)。其他若干操作:

x.new_ones(n,m, dtype=torch.double)

torch.randn_like(x,dtype=torch.float)

*x.size()

。学习了Pytorch的基本运算操作

。加法操作:

。X+y

.torch.add(x,y)

torch.add(x,y, out=result)

torch.add(x, y, out=result)

.y.add_(x)

。其他若干操作

.x.view()

*x.item(学习了Torch Tensor和Numpy Array之间的相互转换。将Torch Tensor转换为Numpy Array:

.b=a.numpy(

。将NumpyArray转换为Torch Tensor:

b=torch.from_numpy(a)

注意: 所有才CPU上的Tensor, 除了CharTensor,都可以转换为Numpy Array并可以反向转换

学习了任意的Tensors可以用.to0)方法来将其移动到任意设备上

x= x.to(device)

自然语言处理

什么是自然语言处理:

自然语言处理(Natural Language Processing,简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域.

自然语言处理的应用场景:

语音助手

机器翻译

搜索引擎

智能问答

......

1.1 认识文本预处理

1.2 文本处理的基本方法

jieba的使用

流行中英文分词工具hanlp

命名实体识别

词性标注

小节总结

1.3 文本张量表示方法

1.4 文本数据分析

1.5 文本特征处理

1.6 文本数据增强

附录

新闻主题分类任务

RNN

1.1认识RNN模型

1.2传统RNN模型

1.3 LSTM模型

1.4 GRU模型

1.5 注意力机制

Transformer

第一章:Transformer背景介绍

第二章:Transformer架构解析

第三章:Transformer经典案例

相关推荐
机器学习之心1 天前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER1 天前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao1 天前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu1 天前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii1 天前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
我爱挣钱我也要早睡!1 天前
Java 复习笔记
java·开发语言·笔记
ai产品老杨1 天前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd1 天前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室1 天前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
湫兮之风1 天前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉