自然语言处理:我的学习心得与笔记

Pytorch

1.Pytorch基本语法

1.1 认识Pytorch

1.2 Pytorch中的autograd

2.Pytorch初步应用

2.1 使用Pytorch构建一个神经网络

2.2 使用Pytorch构建一个分类器

小节总结

学习了什么是Pytorch.

。Pytorch是一个基于Numpy的科学计算包,作为Numpy的替代者,向用户提供使用GPU强大功能的能力.

做为一款深度学习的平台,向用户提供最大的灵活性和速度。学习了Pytorch的基本元素操作

·矩阵的初始化:

.torch.empty()

torch.rand(n, m)

*torch.zeros(n,m,dtype=torch.long)。其他若干操作:

x.new_ones(n,m, dtype=torch.double)

torch.randn_like(x,dtype=torch.float)

*x.size()

。学习了Pytorch的基本运算操作

。加法操作:

。X+y

.torch.add(x,y)

torch.add(x,y, out=result)

torch.add(x, y, out=result)

.y.add_(x)

。其他若干操作

.x.view()

*x.item(学习了Torch Tensor和Numpy Array之间的相互转换。将Torch Tensor转换为Numpy Array:

.b=a.numpy(

。将NumpyArray转换为Torch Tensor:

b=torch.from_numpy(a)

注意: 所有才CPU上的Tensor, 除了CharTensor,都可以转换为Numpy Array并可以反向转换

学习了任意的Tensors可以用.to0)方法来将其移动到任意设备上

x= x.to(device)

自然语言处理

什么是自然语言处理:

自然语言处理(Natural Language Processing,简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域.

自然语言处理的应用场景:

语音助手

机器翻译

搜索引擎

智能问答

......

1.1 认识文本预处理

1.2 文本处理的基本方法

jieba的使用

流行中英文分词工具hanlp

命名实体识别

词性标注

小节总结

1.3 文本张量表示方法

1.4 文本数据分析

1.5 文本特征处理

1.6 文本数据增强

附录

新闻主题分类任务

RNN

1.1认识RNN模型

1.2传统RNN模型

1.3 LSTM模型

1.4 GRU模型

1.5 注意力机制

Transformer

第一章:Transformer背景介绍

第二章:Transformer架构解析

第三章:Transformer经典案例

相关推荐
AIBox3652 分钟前
ChatGPT 中文版镜像官网,GPT5.2使用教程(2025年 12 月更新)
人工智能
测试人社区-千羽7 分钟前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
d111111111d8 分钟前
STM32得中断服务函数,为什么不能有返回值
笔记·stm32·单片机·嵌入式硬件·学习
2501_924794909 分钟前
企业AI转型为何难?——从“不敢用”到“用得稳”的路径重构
大数据·人工智能·重构
阿蒙Amon18 分钟前
JavaScript学习笔记:12.类
javascript·笔记·学习
Tezign_space20 分钟前
小红书内容运营工具怎么选?专业视角拆解优质工具核心标准
大数据·人工智能·内容运营
老马啸西风22 分钟前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
康实训23 分钟前
养老实训室建设标准指南
大数据·人工智能·实训室·养老实训室·实训室建设
袖手蹲24 分钟前
Arduino UNO Q 烘托圣诞节气氛
人工智能·单片机·嵌入式硬件
wjykp30 分钟前
part 3神经网络的学习
人工智能·神经网络·学习