【AI知识】有监督学习之回归任务(附线性回归代码及可视化)

1. 回归的基本概念

在机器学习的有监督学习中,回归(Regression)是一种常见的任务,它的目标是通过观察数据来建立一个模型,用一个或多个自变量来预测因变量的值。

回归分析通常用于: a.预测 ,基于已有数据,预测未知的数据,b. 解释关系,分析自变量与因变量之间的关系和影响。

回归任务举例: 根据房屋的面积、位置、房龄等信息,预测房屋的市场价格。

回归模型的类型: 线性回归(Linear Regression)、 非线性回归(Nonlinear Regression)、岭回归(Ridge Regression)等

2. 线性回归(Linear Regression)

线性回归是最基础的回归方法,它假设自变量和因变量之间存在线性关系。常见的线性回归模型有:


3. 非线性回归(Nonlinear Regression)

当自变量和因变量之间的关系不再是线性时,可使用非线性回归,适用于那些数据呈现曲线而不是直线趋势的情况。这种回归模型包含了更复杂的数学关系,例如:


4. 回归任务的评估指标

回归模型的评估指标用来衡量模型的预测能力和拟合程度。常见的评估指标有:

5. 使用 scikit-learn 库进行单变量线性回归分析

python 复制代码
# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 生成模拟数据
np.random.seed(42)  # 为了可复现性
X = 2 * np.random.rand(100, 1)  # 生成100个随机自变量
Y = 4 + 3 * X + np.random.randn(100, 1)  # 生成因变量(线性关系加上噪声)

# 可视化数据
plt.scatter(X, Y, color='blue', label='Data Points')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Generated Data')
plt.show()
python 复制代码
# 数据集划分:80%训练,20%测试
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

# 创建线性回归模型
model = LinearRegression()

# 训练模型
model.fit(X_train, Y_train)

# 进行预测
Y_pred = model.predict(X_test)

# 打印回归系数和截距
print(f"回归系数 (β1): {model.coef_[0]}")
print(f"截距 (β0): {model.intercept_}")
#回归系数 (β1): [2.79932366]
#截距 (β0): [4.14291332]
python 复制代码
# 评估模型
mse = mean_squared_error(Y_test, Y_pred)
r2 = r2_score(Y_test, Y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")
#均方误差 (MSE): 0.6536995137170021
#决定系数 (R²): 0.8072059636181392

# 可视化结果
plt.scatter(X_test, Y_test, color='blue', label='True Data')
plt.plot(X_test, Y_pred, color='red', label='Regression Line')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Linear Regression Model')
plt.legend()
plt.show()
相关推荐
说私域5 分钟前
桑德拉精神与开源链动2+1模式AI智能名片S2B2C商城小程序的协同价值研究
人工智能·小程序·开源·零售
视觉语言导航15 分钟前
武汉大学无人机视角下的多目标指代理解新基准!RefDrone:无人机场景指代表达理解数据集
人工智能·深度学习·无人机·具身智能
艾醒(AiXing-w)31 分钟前
探索大语言模型(LLM):国产大模型DeepSeek vs Qwen,谁才是AI模型的未来?
大数据·人工智能·语言模型
巷95538 分钟前
YOLO v2:目标检测领域的全面性进化
人工智能·yolo·目标检测
Cloud Traveler40 分钟前
从 “学会学习” 到高效适应:元学习技术深度解析与应用实践
人工智能·学习·自然语言处理
数澜悠客44 分钟前
AI规则引擎:解锁SQL数据分析新姿势
数据库·人工智能·oracle
蹦蹦跳跳真可爱5891 小时前
Python----神经网络(《Inverted Residuals and Linear Bottlenecks》论文概括和MobileNetV2网络)
网络·人工智能·python·深度学习·神经网络
Mory_Herbert1 小时前
5.2 参数管理
人工智能·pytorch·深度学习·神经网络·机器学习
hanniuniu131 小时前
强力巨彩谷亚推出专业智慧显示屏,满足多元场景需求
人工智能
He_Donglin1 小时前
Data Mining|缺省值补全实验
人工智能·机器学习·数据挖掘