宽窄依赖/宽窄巷子——spark

宽窄依赖是用于标记算子是否需要shuffle过程的

------本质:只是一种标记,标记两个RDD之间的依赖关系,用于判断是否需要进行shuffle

窄依赖:Narrow Dependencies

复制代码

定义:父RDD的一个分区的数据只给了子RDD的一个分区 【不用经过Shuffle】 特点:一对一或者多对一 不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等 一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

宽依赖:Wide/Shuffle Dependencies

复制代码

定义:父RDD的一个分区的数据给了子RDD的多个分区 【需要调用Shuffle的分区器来实现】 特点:一对多,必须经过Shuffle ,性能相对较慢,可以实现全局分区、排序、分组等 Spark的job中按照宽依赖来划分不同的Stage

为什么要标记宽窄关系?

1)提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

复制代码
场景:如果子RDD的某个分区的数据丢失
不标记:不清楚父RDD分区与子RDD分区数据之间的关系,必须重新构建整个父RDD所有分区数据
标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2)提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

复制代码
如果不标记,怎么知道哪些算子需要shuffer呢?
------------就只能把数据放在磁盘,让shuffer算子,去拉取数据,效率低
相关推荐
亲爱的非洲野猪2 分钟前
Kafka “假死“现象深度解析与解决方案
分布式·kafka
虾条_花吹雪7 分钟前
2、Connecting to Kafka
分布式·ai·kafka
DeepSeek大模型官方教程39 分钟前
NLP之文本纠错开源大模型:兼看语音大模型总结
大数据·人工智能·ai·自然语言处理·大模型·产品经理·大模型学习
KellenKellenHao2 小时前
MySQL数据库主从复制
数据库·mysql
大数据CLUB2 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark
Edingbrugh.南空2 小时前
Hadoop高可用集群搭建
大数据·hadoop·分布式
@ chen2 小时前
Redis事务机制
数据库·redis
智慧化智能化数字化方案2 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
KaiwuDB2 小时前
使用Docker实现KWDB数据库的快速部署与配置
数据库·docker
Bug退退退1232 小时前
RabbitMQ 高级特性之重试机制
java·分布式·spring·rabbitmq