宽窄依赖/宽窄巷子——spark

宽窄依赖是用于标记算子是否需要shuffle过程的

------本质:只是一种标记,标记两个RDD之间的依赖关系,用于判断是否需要进行shuffle

窄依赖:Narrow Dependencies

复制代码

定义:父RDD的一个分区的数据只给了子RDD的一个分区 【不用经过Shuffle】 特点:一对一或者多对一 不经过Shuffle,性能相对较快, 但无法实现全局分区、排序、分组等 一个Stage内部的计算都是窄依赖的过程,全部在内存中 完成。

宽依赖:Wide/Shuffle Dependencies

复制代码

定义:父RDD的一个分区的数据给了子RDD的多个分区 【需要调用Shuffle的分区器来实现】 特点:一对多,必须经过Shuffle ,性能相对较慢,可以实现全局分区、排序、分组等 Spark的job中按照宽依赖来划分不同的Stage

为什么要标记宽窄关系?

1)提高数据容错的性能,避免分区数据丢失时,需要重新构建整个RDD

复制代码
场景:如果子RDD的某个分区的数据丢失
不标记:不清楚父RDD分区与子RDD分区数据之间的关系,必须重新构建整个父RDD所有分区数据
标记了:父RDD一个分区只对应子RDD的一个分区,按照对应关系恢复父RDD的对应分区即可

2)提高数据转换的性能,将连续窄依赖操作使用同一个Task都放在内存中直接转换

复制代码
如果不标记,怎么知道哪些算子需要shuffer呢?
------------就只能把数据放在磁盘,让shuffer算子,去拉取数据,效率低
相关推荐
计算机毕业设计木哥15 分钟前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T062051425 分钟前
工具变量-5G试点城市DID数据(2014-2025年
大数据
一个天蝎座 白勺 程序猿44 分钟前
Apache IoTDB(5):深度解析时序数据库 IoTDB 在 AINode 模式单机和集群的部署与实践
数据库·apache·时序数据库·iotdb·ainode
向往鹰的翱翔1 小时前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
QQ3596773451 小时前
ArcGIS Pro实现基于 Excel 表格批量创建标准地理数据库(GDB)——高效数据库建库解决方案
数据库·arcgis·excel
学编程的小程2 小时前
突破局域网限制:MongoDB远程管理新体验
数据库·mongodb
鸿乃江边鸟2 小时前
向量化和列式存储
大数据·sql·向量化
波波烤鸭2 小时前
Redis 高可用实战源码解析(Sentinel + Cluster 整合应用)
数据库·redis·sentinel
IT毕设梦工厂3 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工3 小时前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5