(六)机器学习 - 正态数据分布

正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。

正态分布的数学表达式为:

其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。

正态分布具有以下特征:

  1. 对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。

  2. 均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。

  3. 标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。

  4. 总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。

  5. 68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。

使用Python 创建一组正态数据分布:

python 复制代码
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。

正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。

END.

相关推荐
Milk夜雨16 分钟前
人工智能与大数据:从零开始学习的教学指南
大数据·人工智能·学习
AIBigModel1 小时前
专访李飞飞:从2D到3D,AI将为我们带来哪些改变?
人工智能·3d
weixin_404551241 小时前
huggingface NLP-微调一个预训练模型
人工智能·自然语言处理·微调·nlp·huggingface·fine-train
我的龙呢1 小时前
Flash Attention
人工智能·flash attention
云樱梦海1 小时前
Coconut:探索大语言模型的连续思维链推理能力
人工智能·coconut
hsg772 小时前
AI绘图:开源Stable Diffusion 3 ComfyUI下载安装方法
人工智能·stable diffusion
思通数科x2 小时前
AI监控赋能健身馆与游泳馆全方位守护,提升安全效率
人工智能·安全·目标检测·机器学习·计算机视觉·自然语言处理·ocr
宸码3 小时前
【机器学习】【无监督学习——聚类】从零开始掌握聚类分析:探索数据背后的隐藏模式与应用实例
人工智能·python·学习·算法·机器学习·数据挖掘·聚类
铭瑾熙3 小时前
机器学习之强化学习
人工智能·机器学习