(六)机器学习 - 正态数据分布

正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。

正态分布的数学表达式为:

其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。

正态分布具有以下特征:

  1. 对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。

  2. 均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。

  3. 标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。

  4. 总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。

  5. 68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。

使用Python 创建一组正态数据分布:

python 复制代码
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。

正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。

END.

相关推荐
audyxiao0016 小时前
人工智能顶级期刊PR论文解读|HCRT:基于相关性感知区域的混合网络,用于DCE-MRI图像中的乳腺肿瘤分割
网络·人工智能·智慧医疗·肿瘤分割
零售ERP菜鸟6 小时前
IT价值证明:从“成本中心”到“增长引擎”的确定性度量
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
叫我:松哥6 小时前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
童话名剑7 小时前
目标检测(吴恩达深度学习笔记)
人工智能·目标检测·滑动窗口·目标定位·yolo算法·特征点检测
木卫四科技7 小时前
【木卫四 CES 2026】观察:融合智能体与联邦数据湖的安全数据运营成为趋势
人工智能·安全·汽车
珠海西格电力12 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃12 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
启途AI12 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_113 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客13 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer