(六)机器学习 - 正态数据分布

正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。

正态分布的数学表达式为:

其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。

正态分布具有以下特征:

  1. 对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。

  2. 均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。

  3. 标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。

  4. 总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。

  5. 68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。

使用Python 创建一组正态数据分布:

python 复制代码
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。

正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。

END.

相关推荐
EchoMind-Henry23 分钟前
EchoMindBot_v1.0.0 发布了
人工智能·ai·ai agent 研发手记
BlockWay24 分钟前
西甲赛程搬进平台:WEEX以竞猜开启区域合作落地
大数据·人工智能·算法·安全
HelloWorld__来都来了25 分钟前
2026.2.16 上周科研/学术热点 & 写作Ideas
人工智能·学术
过期的秋刀鱼!32 分钟前
神经网络-代码中的推理
人工智能·深度学习·神经网络
User_芊芊君子37 分钟前
WebSocket实时通信入门,感谢我的好搭档脉脉
网络·人工智能·websocket·网络协议·测评
KG_LLM图谱增强大模型1 小时前
OpenClaw创始人官宣加入OpenAI:从开源项目到AI智能体革命-附128页电子书OpenClaw入门到精通及安装部署指南
人工智能·开源
Asher阿舍技术站1 小时前
【AI基础学习系列】四、Prompt基础知识
人工智能·学习·prompt
2401_828890641 小时前
实现扩散模型 Stable Diffusion - MNIST 数据集
人工智能·python·深度学习·stable diffusion
SailingCoder1 小时前
【 从“打补丁“到“换思路“ 】一次企业级 AI Agent 的架构拐点
大数据·前端·人工智能·面试·架构·agent
hqyjzsb2 小时前
企业培训ROI深度分析:如何将CAIE认证的显性与隐性成本纳入投资回报率模型
人工智能·考研·职场和发展·创业创新·学习方法·业界资讯·改行学it