(六)机器学习 - 正态数据分布

正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。

正态分布的数学表达式为:

其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。

正态分布具有以下特征:

  1. 对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。

  2. 均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。

  3. 标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。

  4. 总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。

  5. 68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。

使用Python 创建一组正态数据分布:

python 复制代码
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。

正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。

END.

相关推荐
Niuguangshuo12 分钟前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火15 分钟前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz258878219 分钟前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a31 分钟前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily1 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15881 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01171 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I1 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白2 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷2 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能