正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。
正态分布的数学表达式为:
其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。
正态分布具有以下特征:
-
对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。
-
均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。
-
标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。
-
总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。
-
68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。
使用Python 创建一组正态数据分布:
python
import numpy
import matplotlib.pyplot as plt
x = numpy.random.normal(5.0, 1.0, 100000)
plt.hist(x, 100)
plt.show()
结果:
直方图解释
我们使用 numpy.random.normal()
方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。
我们指定平均值为 5.0,标准差为 1.0。
这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。
从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。
正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。
END.