(六)机器学习 - 正态数据分布

正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。

正态分布的数学表达式为:

其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。

正态分布具有以下特征:

  1. 对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。

  2. 均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。

  3. 标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。

  4. 总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。

  5. 68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。

使用Python 创建一组正态数据分布:

python 复制代码
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。

正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。

END.

相关推荐
OJAC1118 分钟前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心11 分钟前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云26 分钟前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周32 分钟前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
xier_ran1 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_1 小时前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能
海边夕阳20061 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_918126911 小时前
如何用ai做开发
人工智能
f***a3462 小时前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
用户5191495848452 小时前
BBDown:高效便捷的哔哩哔哩视频下载工具
人工智能·aigc