(六)机器学习 - 正态数据分布

正态数据分布,也称为高斯分布(Gaussian distribution),是一种在统计学中非常重要的概率分布。它描述了自然和社会科学中许多现象的分布情况,如人的身高、体重、智商等。正态分布的图形特征是中间高、两边低,呈对称的钟形曲线,因此也被称为钟形曲线(bell curve)。

正态分布的数学表达式为:

其中,μμ 是分布的均值(mean),σσ 是分布的标准差(standard deviation),σ2σ2 是分布的方差(variance)。

正态分布具有以下特征:

  1. 对称性:正态分布的图形关于均值 μμ 对称,即分布的左侧和右侧是镜像的。

  2. 均值、中位数和众数相等:在正态分布中,均值、中位数(median)和众数(mode)是相同的,都等于 μμ。

  3. 标准差决定分布的宽度:标准差 σσ 决定了分布的宽度。标准差越大,分布越分散;标准差越小,分布越集中。

  4. 总面积为1:正态分布曲线下的总面积为1,表示所有可能结果的概率之和为1。

  5. 68-95-99.7规则:在正态分布中,约68%的数据点落在均值的一个标准差范围内(μ±σμ±σ),约95%的数据点落在均值的两个标准差范围内(μ±2σμ±2σ),约99.7%的数据点落在均值的三个标准差范围内(μ±3σμ±3σ)。

使用Python 创建一组正态数据分布:

python 复制代码
import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

结果:

直方图解释

我们使用 numpy.random.normal() 方法创建的数组(具有 100000 个值)绘制具有 100 栏的直方图。

我们指定平均值为 5.0,标准差为 1.0。

这意味着这些值应集中在 5.0 左右,并且很少与平均值偏离 1.0。

从直方图中可以看到,大多数值都在 4.0 到 6.0 之间,最高值大约是 5.0。

正态分布的这些特征使得它在统计分析中具有广泛的应用,如假设检验、置信区间的计算、回归分析等。在实际应用中,如果数据的分布接近正态分布,我们可以使用正态分布的性质来对数据进行分析和解释。

END.

相关推荐
jay神几秒前
指纹识别考勤打卡系统 - 完整源码项目
人工智能·深度学习·机器学习·计算机视觉·毕业设计
智慧医院运行管理解决方案专家2 分钟前
当医院安全进入“自动驾驶”时代:AI机器人医院安全值守日记
人工智能·安全·自动驾驶
码农三叔2 分钟前
(2-3)人形机器人的总体架构与系统工程:人形机器人的关键性能指标
人工智能·机器人·人形机器人
2501_941507943 分钟前
【目标检测】YOLO13-C3k2-PFDConv实现长颈鹿与斑马精准检测,完整教程与代码解析_1
人工智能·目标检测·目标跟踪
机器学习之心10 分钟前
MATLAB基于多指标定量测定联合PCA、OPLS-DA、FA及熵权TOPSIS模型的等级预测
人工智能·算法·matlab·opls-da
AI殉道师11 分钟前
AI Agent 架构深度解析:从零打造你的智能助手
人工智能·架构
Loo国昌19 分钟前
【LangChain1.0】第八阶段:文档处理工程(LangChain篇)
人工智能·后端·算法·语言模型·架构·langchain
广州灵眸科技有限公司28 分钟前
瑞芯微(EASY EAI)RV1126B 语音识别
人工智能·语音识别
2501_9421917732 分钟前
基于YOLOv5-RepHGNetV2的青椒目标检测方法研究原创
人工智能·yolo·目标检测
wukangjupingbb43 分钟前
从英矽智能与晶泰科技在港股的上市看目前中国AI制药研发的趋势以及竞争态势
人工智能·科技