3D 生成重建036-HyperDiffusion直接生成nerf几何

3D 生成重建036-HyperDiffusion直接生成nerf几何


文章目录

    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
    • [2 实验结果](#2 实验结果)

0 论文工作

作者提出了一种名为HyperDiffusion的新型方法,用于直接生成隐式神经辐射场,方法是预测其权重空间中的参数 。与以往需要对神经网络的单个实例进行优化的隐式神经表示方法不同,我们利用了一个基于Transformer的神经网络架构,该架构能够对隐式神经辐射场的权重参数进行高效的扩散过程 。通过这种方式,HyperDiffusion能够直接从噪声中生成高质量的三维模型,无需任何耗时的优化步骤。
pointE跟shapE都是采用了traosformer架构但是他们并不是采用扩散模型架构
diffnef跟这个论文差别大吗?不大,整体的优化策略不一样,hyperdiffusion实际上只有3d级别的监督,diffrf是2d+3d。而且hyperdiffusion更关注的几何部分。
paper
github

相关论文
nerfdiff
diffnef

1 论文方法

HyperDiffusion 旨在解决现有隐式神经辐射场表示方法(例如,使用多层感知机MLP表示)需要对模型参数进行逐个优化,导致生成速度慢且效率低下的问题。 它采用了一种全新的范式,直接在权重空间中进行扩散,从而生成隐式神经辐射场 。具体来说,HyperDiffusion 首先利用一个基于Transformer的网络架构来表示隐式神经辐射场的权重参数;然后,通过一个扩散过程,从噪声中生成这些权重参数;最后,利用生成的权重参数构建实际的三维模型,例如通过Marching Cubes算法提取网格。 整个过程无需任何迭代优化,显著提高了生成速度。
权重空间扩散 : 这是HyperDiffusion最主要的创新点。它直接在神经网络的权重空间中进行扩散,而不是在模型输出空间或潜在空间中进行。这种方法避免了在高维空间中进行优化,极大地提高了生成效率。 以往方法通常需要迭代优化MLP的参数,效率低下。
基于Transformer的架构 : HyperDiffusion采用基于Transformer的架构来表示和处理神经网络的权重参数。Transformer的强大表达能力和并行计算能力,使得该方法能够高效地处理高维数据,并生成高质量的三维模型。

无需迭代优化: HyperDiffusion 直接从噪声中生成神经网络的权重参数,无需任何耗时的迭代优化过程。这使得该方法能够以极快的速度生成高质量的三维模型。

2 实验结果

相关推荐
在下胡三汉40 分钟前
3dmax批量转glb/gltf/fbx/osgb/stl/3ds/dae/obj/skp格式导出转换插件,无需一个个打开max,材质贴图在
3d·材质·贴图
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
xhload3d1 小时前
智能网联汽车云控平台 | 图扑数字孪生
3d·gis·智慧城市·html5·webgl·数字孪生·可视化·工业互联网·车联网·智慧交通·智能网联·汽车云控
mosquito_lover11 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
契合qht53_shine1 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Naomi5212 小时前
Trustworthy Machine Learning
人工智能·机器学习
ssshooter2 小时前
2025 最新 AI 模型深度对比:ChatGPT、Claude、Gemini到底选谁?
程序员·aigc·openai