LLM模型的generate和chat函数区别

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

1. generate 方法

  • generate 方法是模型的原生方法,用于生成文本。

  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。

  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

    from transformers import GPT2LMHeadModel, GPT2Tokenizer

    model_name = "gpt2"
    model = GPT2LMHeadModel.from_pretrained(model_name)
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)

    input_text = "Once upon a time,"
    generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
    print(tokenizer.decode(generated_text, skip_special_tokens=True))

2. chat 方法

  • chat 方法是一个高级的便捷方法,通常用于模拟对话。

  • 提供了更简单的用户交互方式,以模拟对话流程,尤其在聊天式应用中更为方便。

  • 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。

    from transformers import GPT2LMHeadModel, GPT2Tokenizer

    model_name = "gpt2"
    model = GPT2LMHeadModel.from_pretrained(model_name)
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)

    chat_history = [
    {'role':'system', 'content':'You are a helpful assistant.'},
    {'role':'user', 'content':'Who won the world series in 2020?'},
    {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
    ]

    user_input = "Who won the Super Bowl in 2021?"
    chat_history.append({'role':'user', 'content':user_input})

    使用 chat 方法进行对话

    response = model.chat(chat_history)
    print(response)

总体来说,generate 方法更加灵活,适用于更多的生成任务,而 chat 方法则提供了更高级别、更易于使用的接口,适用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。

相关推荐
致Great2 天前
从零开始优化 RAG 流程的终极指南,解决检索增强生成的核心挑战
人工智能·llm
一 铭3 天前
dify实现分析-rag-关键词索引的实现
人工智能·语言模型·大模型·llm
shandianchengzi3 天前
【笔记】LLM|Ubuntu22服务器极简本地部署DeepSeek+联网使用方式
服务器·llm·api·本地部署·deepseek
cpuCode4 天前
BERT 大模型
人工智能·深度学习·ai·自然语言处理·大模型·llm·bert
码农阿豪4 天前
本地部署Anything LLM+Ollama+DeepSeek R1打造AI智能知识库教程
人工智能·llm·ollama·deepseek
Iotfsd5 天前
WPS的AI助手进化跟踪(灵犀+插件)
人工智能·语言模型·llm·wps·deepseek·灵犀·底座模型
程序设计实验室5 天前
LLM探索:离线部署Ollama和one-api服务
ai·llm
x-cmd5 天前
[250217] x-cmd 发布 v0.5.3:新增 DeepSeek AI 模型支持及飞书/钉钉群机器人 Webhook 管理
ai·机器人·llm·钉钉·飞书·webhook·deepseek
shandianchengzi5 天前
【BUG】LLM|Ubuntu 用 ollama 部署 DeepSeek 但没输出,llama 有输出
ubuntu·llm·bug·llama·ollama·deepseek
薛尧笔记6 天前
解锁AnythingLLM与DeekSeek:AI探索新征程
llm·deepseek