LLM模型的generate和chat函数区别

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

1. generate 方法

  • generate 方法是模型的原生方法,用于生成文本。

  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。

  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

    from transformers import GPT2LMHeadModel, GPT2Tokenizer

    model_name = "gpt2"
    model = GPT2LMHeadModel.from_pretrained(model_name)
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)

    input_text = "Once upon a time,"
    generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
    print(tokenizer.decode(generated_text, skip_special_tokens=True))

2. chat 方法

  • chat 方法是一个高级的便捷方法,通常用于模拟对话。

  • 提供了更简单的用户交互方式,以模拟对话流程,尤其在聊天式应用中更为方便。

  • 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。

    from transformers import GPT2LMHeadModel, GPT2Tokenizer

    model_name = "gpt2"
    model = GPT2LMHeadModel.from_pretrained(model_name)
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)

    chat_history = [
    {'role':'system', 'content':'You are a helpful assistant.'},
    {'role':'user', 'content':'Who won the world series in 2020?'},
    {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
    ]

    user_input = "Who won the Super Bowl in 2021?"
    chat_history.append({'role':'user', 'content':user_input})

    使用 chat 方法进行对话

    response = model.chat(chat_history)
    print(response)

总体来说,generate 方法更加灵活,适用于更多的生成任务,而 chat 方法则提供了更高级别、更易于使用的接口,适用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。

相关推荐
鱼鱼块2 小时前
"从自然语言到数据库:AI First 时代的编程与开发革命"
sqlite·llm·openai
ohyeah4 小时前
AI First 时代:用大模型构建轻量级后台管理系统
前端·llm
Swizard5 小时前
Claude Opus 4.5 深度解构:当 AI 学会了“拒绝道歉”与“痛恨列表”
ai·llm·prompt·claude
企鹅侠客5 小时前
Ubuntu本地部署AnythingLLM实现本地文档RAG
linux·运维·ubuntu·llm
缘友一世7 小时前
Unsloth高效微调实战:基于DeepSeek-R1-Distill-Llama-8B与医疗R1数据
llm·模型微调·unsloth·deepseek
kida_yuan9 小时前
【从零开始】19. 模型实测与验证
人工智能·llm
沛沛老爹9 小时前
LangGraph系列9 :调试、日志与可观测性 —— 当你的 AI 智能体突然精神分裂,如何 5 分钟定位故障?
人工智能·langchain·llm·调试·rag·langgraph·ai入门
有意义10 小时前
说人话,查数据:构建一个自然语言驱动的 SQLite 后台
sqlite·llm·deepseek
晴栀ay10 小时前
AI TO SQL:AIGC时代数据库操作的革命性变革
数据库·llm·aigc
Baihai_IDP11 小时前
用户体验与商业化的两难:Chatbots 的广告承载困境分析
人工智能·面试·llm