OpenCV图片矫正

矫正效果图:

实验原理:

先找到这个不规则四边形的四个顶点的坐标,然后拿一个numpy数组来接收他们,然后再写一个numpy数组记录新生成图的四个顶点,然后写下M透视变换矩阵,可以通过函数cv2.getPerspectiveTransform()计算得到,然后通过透视变换函数cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)得到一张新的图片

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

功能:用于对图像进行透视变换的函数

参数:

src: 输入图像,即你想要进行透视变换的源图像。

M: 透视变换矩阵,通常是一个 3x3 的矩阵,可以通过 cv2.getPerspectiveTransform() 函数计算得到。这个矩阵定义了源图像中的点如何映射到目标图像中的点。

dsize: 输出图像的尺寸,以 (width, height) 的形式表示。这是变换后图像的尺寸。

dst: 输出图像,这是一个可选参数。

flags: 插值方法。

borderMode: 边界填充方法。

borderValue: 边界颜色【可选】。

python 复制代码
import cv2
import numpy as np

img=cv2.imread('./pic.png')
# 2、 获取透视变换矩阵
# 目标图中的四个点
points1=np.float32([[175,143],[621,35],[89,491],[652,546]])
# 目标图中的四个点
points2=np.float32([[min(points1[:,0]),min(points1[:,1])],
                   [max(points1[:,0]),min(points1[:,1])],
                   [min(points1[:,0]),max(points1[:,1])],
                   [max(points1[:,0]),max(points1[:,1])]])
M=cv2.getPerspectiveTransform(points1,points2)
img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
cv2.imshow('image',img)
cv2.imshow('image_Perspective',img_Perspective)
cv2.waitKey(0)
相关推荐
Dream25126 分钟前
【Transformer架构】
人工智能·深度学习·transformer
黎智程7 分钟前
AI助力小微企业技术开发规范化管理 | 杂谈
人工智能
web1508541593530 分钟前
超级详细Spring AI运用Ollama大模型
人工智能·windows·spring
啊哈哈哈哈哈啊哈哈32 分钟前
J4打卡—— ResNet 和 DenseNet结合实现鸟类分类
人工智能·pytorch·分类
alden_ygq36 分钟前
Ollama API 交互
人工智能·交互
小刘私坊42 分钟前
机器梦境:AI如何在创意的狂野边疆上重塑艺术
人工智能
香橙薄荷心1 小时前
人工智能之自动驾驶技术体系
人工智能·机器学习·自动驾驶
孤寂大仙v1 小时前
深度学习入门:从零开始理解神经网络
人工智能·深度学习·神经网络
本就是菜鸟何必心太浮1 小时前
神经网络——梯度下溢
人工智能·深度学习·神经网络
美股研究社1 小时前
百度智能云AI收入增3倍,2025开源引流打赢生态战
人工智能·百度·开源