OpenCV图片矫正

矫正效果图:

实验原理:

先找到这个不规则四边形的四个顶点的坐标,然后拿一个numpy数组来接收他们,然后再写一个numpy数组记录新生成图的四个顶点,然后写下M透视变换矩阵,可以通过函数cv2.getPerspectiveTransform()计算得到,然后通过透视变换函数cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)得到一张新的图片

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

功能:用于对图像进行透视变换的函数

参数:

src: 输入图像,即你想要进行透视变换的源图像。

M: 透视变换矩阵,通常是一个 3x3 的矩阵,可以通过 cv2.getPerspectiveTransform() 函数计算得到。这个矩阵定义了源图像中的点如何映射到目标图像中的点。

dsize: 输出图像的尺寸,以 (width, height) 的形式表示。这是变换后图像的尺寸。

dst: 输出图像,这是一个可选参数。

flags: 插值方法。

borderMode: 边界填充方法。

borderValue: 边界颜色【可选】。

python 复制代码
import cv2
import numpy as np

img=cv2.imread('./pic.png')
# 2、 获取透视变换矩阵
# 目标图中的四个点
points1=np.float32([[175,143],[621,35],[89,491],[652,546]])
# 目标图中的四个点
points2=np.float32([[min(points1[:,0]),min(points1[:,1])],
                   [max(points1[:,0]),min(points1[:,1])],
                   [min(points1[:,0]),max(points1[:,1])],
                   [max(points1[:,0]),max(points1[:,1])]])
M=cv2.getPerspectiveTransform(points1,points2)
img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
cv2.imshow('image',img)
cv2.imshow('image_Perspective',img_Perspective)
cv2.waitKey(0)
相关推荐
小白学C++.5 分钟前
大模型论文:CRAMMING TRAINING A LANGUAGE MODEL ON ASINGLE GPU IN ONE DAY(效率提升)-final
人工智能·语言模型·自然语言处理
Encarta19937 分钟前
【语音识别】vLLM 部署 Whisper 语音识别模型指南
人工智能·whisper·语音识别
AWS官方合作商17 分钟前
AWS Bedrock:开启企业级生成式AI的钥匙【深度解析】
大数据·人工智能·aws
神经星星19 分钟前
【vLLM 学习】API 客户端
数据库·人工智能·机器学习
星江月23 分钟前
EchoMimic 音频驱动照片生成视频部署测试
人工智能·echomimic·语音生成视频
剑盾云安全专家28 分钟前
AI制作PPT,如何轻松打造高效演示文稿
人工智能·科技·aigc·powerpoint·软件
进来有惊喜1 小时前
OpenCV 表情识别
人工智能·opencv·计算机视觉
Eavan努力努力再努力1 小时前
[目标检测]2023ICCV:DiffusionDet: Diffusion Model for Object Detection
人工智能·目标检测·计算机视觉
进来有惊喜1 小时前
opencv指纹匹配
人工智能·opencv·计算机视觉
啊哈哈哈哈哈啊哈哈1 小时前
R3打卡——tensorflow实现RNN心脏病预测
人工智能·深度学习·学习