OpenCV图片矫正

矫正效果图:

实验原理:

先找到这个不规则四边形的四个顶点的坐标,然后拿一个numpy数组来接收他们,然后再写一个numpy数组记录新生成图的四个顶点,然后写下M透视变换矩阵,可以通过函数cv2.getPerspectiveTransform()计算得到,然后通过透视变换函数cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)得到一张新的图片

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

功能:用于对图像进行透视变换的函数

参数:

src: 输入图像,即你想要进行透视变换的源图像。

M: 透视变换矩阵,通常是一个 3x3 的矩阵,可以通过 cv2.getPerspectiveTransform() 函数计算得到。这个矩阵定义了源图像中的点如何映射到目标图像中的点。

dsize: 输出图像的尺寸,以 (width, height) 的形式表示。这是变换后图像的尺寸。

dst: 输出图像,这是一个可选参数。

flags: 插值方法。

borderMode: 边界填充方法。

borderValue: 边界颜色【可选】。

python 复制代码
import cv2
import numpy as np

img=cv2.imread('./pic.png')
# 2、 获取透视变换矩阵
# 目标图中的四个点
points1=np.float32([[175,143],[621,35],[89,491],[652,546]])
# 目标图中的四个点
points2=np.float32([[min(points1[:,0]),min(points1[:,1])],
                   [max(points1[:,0]),min(points1[:,1])],
                   [min(points1[:,0]),max(points1[:,1])],
                   [max(points1[:,0]),max(points1[:,1])]])
M=cv2.getPerspectiveTransform(points1,points2)
img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
cv2.imshow('image',img)
cv2.imshow('image_Perspective',img_Perspective)
cv2.waitKey(0)
相关推荐
TonyLee0172 分钟前
储备池计算基础实践
人工智能·python
码上宝藏14 分钟前
设计与开发的效率壁垒,被 Locofy.ai 一键击穿
人工智能
之歆23 分钟前
Spring AI Alibaba 从入门到进阶实战-笔记
人工智能·笔记·spring
权泽谦42 分钟前
病灶变化预测 vs 分类:医学影像 AI 中更有价值的问题是什么?
人工智能·机器学习·ai·分类·数据挖掘
Sui_Network44 分钟前
Walrus 2025 年度回顾
大数据·前端·人工智能·深度学习·区块链
说私域1 小时前
开源悬赏活动报名AI智能名片链动2+1模式商城小程序的应用与价值
人工智能·微信·小程序·开源
yuniko-n1 小时前
【AI】基于 LLaMa-Factory 和 LoRA 算法的大模型微调
人工智能
张彦峰ZYF1 小时前
大模型是如何工作的?从原理到通义生态的落地实践
人工智能·大模型是如何工作的?·从原理到通义生态的落地实践·大模型价值是与真实业务深度融合
jimmyleeee1 小时前
人工智能基础知识笔记三十一:Langfuse
人工智能·笔记
桂花饼1 小时前
小镜AI开放平台:Sora 2 API 低价高并发解决方案评测整理
人工智能·qwen3-next·sora2·nano banana 2·gemini-3-pro·gpt-5.2·glm-4.7