OpenCV图片矫正

矫正效果图:

实验原理:

先找到这个不规则四边形的四个顶点的坐标,然后拿一个numpy数组来接收他们,然后再写一个numpy数组记录新生成图的四个顶点,然后写下M透视变换矩阵,可以通过函数cv2.getPerspectiveTransform()计算得到,然后通过透视变换函数cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)得到一张新的图片

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

功能:用于对图像进行透视变换的函数

参数:

src: 输入图像,即你想要进行透视变换的源图像。

M: 透视变换矩阵,通常是一个 3x3 的矩阵,可以通过 cv2.getPerspectiveTransform() 函数计算得到。这个矩阵定义了源图像中的点如何映射到目标图像中的点。

dsize: 输出图像的尺寸,以 (width, height) 的形式表示。这是变换后图像的尺寸。

dst: 输出图像,这是一个可选参数。

flags: 插值方法。

borderMode: 边界填充方法。

borderValue: 边界颜色【可选】。

python 复制代码
import cv2
import numpy as np

img=cv2.imread('./pic.png')
# 2、 获取透视变换矩阵
# 目标图中的四个点
points1=np.float32([[175,143],[621,35],[89,491],[652,546]])
# 目标图中的四个点
points2=np.float32([[min(points1[:,0]),min(points1[:,1])],
                   [max(points1[:,0]),min(points1[:,1])],
                   [min(points1[:,0]),max(points1[:,1])],
                   [max(points1[:,0]),max(points1[:,1])]])
M=cv2.getPerspectiveTransform(points1,points2)
img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
cv2.imshow('image',img)
cv2.imshow('image_Perspective',img_Perspective)
cv2.waitKey(0)
相关推荐
Xxtaoaooo几秒前
Sora文生视频技术拆解:Diffusion Transformer架构与时空建模原理
人工智能·架构·音视频·transformer·sora
lisw051 分钟前
数字化科技简化移民流程的 5 种方式
大数据·人工智能·机器学习
空白到白10 分钟前
Transformer-解码器_编码器部分
人工智能·深度学习·transformer
悟乙己11 分钟前
PandasAI :使用 AI 优化你的分析工作流
人工智能·pandas·pandasai
东临碣石8217 分钟前
【AI论文】CoDA:面向协作数据可视化的智能体系统
人工智能
中杯可乐多加冰24 分钟前
无代码开发实践 | 基于权限管理能力快速开发人力资源管理系统
人工智能·低代码
钊气蓬勃.25 分钟前
深度学习笔记:入门
人工智能·笔记·深度学习
神码小Z25 分钟前
特斯拉前AI总监开源的一款“小型本地版ChatGPT”,普通家用电脑就能运行!
人工智能·chatgpt
IT_陈寒26 分钟前
Redis性能翻倍的7个冷门技巧:从P5到P8都在偷偷用的优化策略!
前端·人工智能·后端
AKAMAI29 分钟前
直播监控的生死时速:深夜告警引发的系统崩溃危机
人工智能·云计算·直播