OpenCV图片矫正

矫正效果图:

实验原理:

先找到这个不规则四边形的四个顶点的坐标,然后拿一个numpy数组来接收他们,然后再写一个numpy数组记录新生成图的四个顶点,然后写下M透视变换矩阵,可以通过函数cv2.getPerspectiveTransform()计算得到,然后通过透视变换函数cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)得到一张新的图片

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

功能:用于对图像进行透视变换的函数

参数:

src: 输入图像,即你想要进行透视变换的源图像。

M: 透视变换矩阵,通常是一个 3x3 的矩阵,可以通过 cv2.getPerspectiveTransform() 函数计算得到。这个矩阵定义了源图像中的点如何映射到目标图像中的点。

dsize: 输出图像的尺寸,以 (width, height) 的形式表示。这是变换后图像的尺寸。

dst: 输出图像,这是一个可选参数。

flags: 插值方法。

borderMode: 边界填充方法。

borderValue: 边界颜色【可选】。

python 复制代码
import cv2
import numpy as np

img=cv2.imread('./pic.png')
# 2、 获取透视变换矩阵
# 目标图中的四个点
points1=np.float32([[175,143],[621,35],[89,491],[652,546]])
# 目标图中的四个点
points2=np.float32([[min(points1[:,0]),min(points1[:,1])],
                   [max(points1[:,0]),min(points1[:,1])],
                   [min(points1[:,0]),max(points1[:,1])],
                   [max(points1[:,0]),max(points1[:,1])]])
M=cv2.getPerspectiveTransform(points1,points2)
img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
cv2.imshow('image',img)
cv2.imshow('image_Perspective',img_Perspective)
cv2.waitKey(0)
相关推荐
时见先生7 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06169 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力9 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场9 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌9 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了9 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书110 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学11 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I11 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术11 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python