【笔记】记录对python中.grad()的一些理解

这几天再看神经网络,有点不明白.grad()、.detach()、.backward()等等等等这些关于梯度计算的东西,今天好像理解了一点,来做一个自己理解的总结。

首先来看一段非常简单的代码:

python 复制代码
import torch

X = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = X * 2
z = y.sum()

z.backward()

print(X.grad)

这里我们定义了一个张量X,定义时将它的requires_grad设为了True,表示后面我们将会计算X的梯度。

然后我们对X进行了一系列运算,首先将它的所有元素乘以2,然后将所有元素相加。

最后实行反向传播计算并将梯度存储在内部,输入梯度。

要注意的是是对z进行反向传播,但梯度是记录在X中的。

最近看到了这样的一段代码:

python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) #定义一个随机梯度下降类
for epoch in range(num_epochs):
    # 前向传播
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # 反向传播和优化
    optimizer.zero_grad()  # 清空之前的梯度
    loss.backward()        # 计算梯度
    optimizer.step()       # 更新权重

就很疑惑:为什么optimizer只要执行一个step就能准确根据梯度更新参数,而loss.backward()好像干了什么但又好像什么都没干,optimizer并没有传入loss作为参数,它是怎么知道要如何更新参数的呢?

现在才知道了,loss.backward()这步就是将梯度存储在先前的参数w、b中,执行完这一步后参数就会带上它的梯度,因此optimizer.step()就能通过w.grad、b.grad调用它的梯度。

另外requires_grad=True这个设置也可有在后面进行取消:

python 复制代码
import torch

X = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = X * 2

y.detach_()

z = y.sum()
z.backward()

print(X.grad)

这样在中间插入了y.detach_(),就相当于把y的requires_grad改回了False,并且y和X的关系被切断,所以无法输出X的grad。

但是:

python 复制代码
import torch

X = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = X * 2

z = y.sum()

y.detach_()

z.backward()

print(X.grad)

这样的话z在y更改设置之前就保留了y和X的关系,所以还是能够输出X的梯度。

相关推荐
酷炫码神2 分钟前
C#运算符
开发语言·c#
小秋学嵌入式-不读研版6 分钟前
C42-作业练习
c语言·开发语言·笔记
休息一下接着来13 分钟前
C++ 条件变量与线程通知机制:std::condition_variable
开发语言·c++·算法
田梓燊22 分钟前
数学复习笔记 14
笔记·线性代数·矩阵
拓端研究室TRL28 分钟前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
小哈里33 分钟前
【pypi镜像源】使用devpi实现python镜像源代理(缓存加速,私有仓库,版本控制)
开发语言·python·缓存·镜像源·pypi
努力学习的小廉37 分钟前
【C++】 —— 笔试刷题day_29
开发语言·c++·算法
_Jyuan_40 分钟前
尼康VR镜头防抖模式NORMAL和ACTIVE的区别(私人笔记)
经验分享·笔记·数码相机·相机
全栈派森41 分钟前
云存储最佳实践
后端·python·程序人生·flask
m0_6786933344 分钟前
深度学习笔记23-LSTM实现火灾预测(Tensorflow)
笔记·深度学习·lstm