【笔记】记录对python中.grad()的一些理解

这几天再看神经网络,有点不明白.grad()、.detach()、.backward()等等等等这些关于梯度计算的东西,今天好像理解了一点,来做一个自己理解的总结。

首先来看一段非常简单的代码:

python 复制代码
import torch

X = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = X * 2
z = y.sum()

z.backward()

print(X.grad)

这里我们定义了一个张量X,定义时将它的requires_grad设为了True,表示后面我们将会计算X的梯度。

然后我们对X进行了一系列运算,首先将它的所有元素乘以2,然后将所有元素相加。

最后实行反向传播计算并将梯度存储在内部,输入梯度。

要注意的是是对z进行反向传播,但梯度是记录在X中的。

最近看到了这样的一段代码:

python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) #定义一个随机梯度下降类
for epoch in range(num_epochs):
    # 前向传播
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # 反向传播和优化
    optimizer.zero_grad()  # 清空之前的梯度
    loss.backward()        # 计算梯度
    optimizer.step()       # 更新权重

就很疑惑:为什么optimizer只要执行一个step就能准确根据梯度更新参数,而loss.backward()好像干了什么但又好像什么都没干,optimizer并没有传入loss作为参数,它是怎么知道要如何更新参数的呢?

现在才知道了,loss.backward()这步就是将梯度存储在先前的参数w、b中,执行完这一步后参数就会带上它的梯度,因此optimizer.step()就能通过w.grad、b.grad调用它的梯度。

另外requires_grad=True这个设置也可有在后面进行取消:

python 复制代码
import torch

X = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = X * 2

y.detach_()

z = y.sum()
z.backward()

print(X.grad)

这样在中间插入了y.detach_(),就相当于把y的requires_grad改回了False,并且y和X的关系被切断,所以无法输出X的grad。

但是:

python 复制代码
import torch

X = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = X * 2

z = y.sum()

y.detach_()

z.backward()

print(X.grad)

这样的话z在y更改设置之前就保留了y和X的关系,所以还是能够输出X的梯度。

相关推荐
0wioiw09 小时前
Go基础(④指针)
开发语言·后端·golang
程序员Xu9 小时前
【LeetCode热题100道笔记】二叉搜索树中第 K 小的元素
笔记·算法·leetcode
DKPT9 小时前
JVM中如何调优新生代和老生代?
java·jvm·笔记·学习·spring
Eric.5659 小时前
python advance -----object-oriented
python
How_doyou_do10 小时前
数据传输优化-异步不阻塞处理增强首屏体验
开发语言·前端·javascript
jingfeng51410 小时前
C++11可变参数模板、emplace系列接口、包装器
开发语言·c++
云天徽上10 小时前
【数据可视化-107】2025年1-7月全国出口总额Top 10省市数据分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·数据挖掘·数据分析·pyecharts
THMAIL10 小时前
机器学习从入门到精通 - 数据预处理实战秘籍:清洗、转换与特征工程入门
人工智能·python·算法·机器学习·数据挖掘·逻辑回归
Tina表姐10 小时前
(C题|NIPT 的时点选择与胎儿的异常判定)2025年高教杯全国大学生数学建模国赛解题思路|完整代码论文集合
c语言·开发语言·数学建模
@HNUSTer10 小时前
Python数据可视化科技图表绘制系列教程(六)
python·数据可视化·科技论文·专业制图·科研图表