python rabbitmq实现简单/持久/广播/组播/topic/rpc消息异步发送可配置Django

windows首先安装rabbitmq 点击参考安装

1、环境介绍

Python 3.10.16
其他通过pip安装的版本(Django、pika、celery这几个必须要有最好版本一致)
amqp              5.3.1
asgiref           3.8.1
async-timeout     5.0.1
billiard          4.2.1
celery            5.4.0
click             8.1.7
click-didyoumean  0.3.1
click-plugins     1.1.1
click-repl        0.3.0
colorama          0.4.6
Django            4.2
dnspython         2.7.0
eventlet          0.38.2
greenlet          3.1.1
kombu             5.4.2
pika              1.3.2
pip               24.2
prompt_toolkit    3.0.48
python-dateutil   2.9.0.post0
redis             5.2.1
setuptools        75.1.0
six               1.17.0
sqlparse          0.5.3
typing_extensions 4.12.2
tzdata            2024.2
vine              5.1.0
wcwidth           0.2.13
wheel             0.44.0

2、创建Django 项目

py 复制代码
django-admin startproject django_rabbitmq

3、在setting最下边写上

py 复制代码
# settings.py    guest:guest 表示的是你安装好的rabbitmq的登录账号和密码
BROKER_URL = 'amqp://guest:guest@localhost:15672/'
CELERY_RESULT_BACKEND = 'rpc://'

4.1 简单模式

4.1.1 在和setting同级的目录下创建一个叫consumer.py的消费者文件,其内容如下:

import pika


def callback(ch, method, properties, body):
    print(f"[x] Received {body.decode()}")


def start_consuming():
    # 创建与RabbitMQ的连接
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
    channel = connection.channel()

    # 声明一个队列
    channel.queue_declare(queue='hello')

    # 指定回调函数
    channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True)

    print('[*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()


if __name__ == "__main__":
    start_consuming()

4.1.2 在和setting同级的目录下创建一个叫producer.py的生产者文件,其内容如下:

import pika


def publish_message():
    # message = request.GET.get('msg')
    # 创建与RabbitMQ的连接
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
    channel = connection.channel()

    # 声明一个队列
    channel.queue_declare(queue='hello')

    # 发布消息
    message = "Hello World!"
    channel.basic_publish(exchange='', routing_key='hello', body=message)
    print(f"[x] Sent '{message}'")

    # 关闭连接
    connection.close()


if __name__ == "__main__":
    publish_message()

4.1.3 先运行消费者代码(consumer.py)再运行生产者代码(producer.py)

先:python consumer.py
再: python producer.py

4.1.4 运行结果如下:


4.2 消息持久化模式

4.2.1 在和setting同级的目录下创建一个叫recv_msg_safe.py的消费者文件,其内容如下:

py 复制代码
import time
import pika


def callback(ch, method, properties, body):
    print(" [x] Received %r" % body)
    time.sleep(20)
    print(" [x] Done")
    # 下边这个就是标记消费完成了,下次在启动接受消息就不用从头开始了,即
    # 手动确认消息消费完成 和auto_ack=False 搭配使用
    ch.basic_ack(delivery_tag=method.delivery_tag)  # method.delivery_tag就是一个标识符,方便找对人


def start_consuming():
    # 创建与RabbitMQ的连接
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
    channel = connection.channel()

    # 声明一个队列
    channel.queue_declare(queue='hello2', durable=True)  # 若声明过,则换一个名字

    # 指定回调函数
    channel.basic_consume(queue='hello2',
                          on_message_callback=callback,
                          # auto_ack=True  # 为true则不能持久话消息,即消费者关闭后下次收不到之前未收取的消息
                          auto_ack=False  # 为False则下次依然从头开始收取消息,直到callback函数调用完成
                          )

    print('[*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()


if __name__ == "__main__":
    start_consuming()

4.2.2 在和setting同级的目录下创建一个叫send_msg_safe.py的生产者文件,其内容如下:

py 复制代码
import pika


def publish_message():
    # 创建与RabbitMQ的连接
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
    channel = connection.channel()

    # 声明一个队列  durable=True队列持久化
    channel.queue_declare(queue='hello2', durable=True)

    channel.basic_publish(exchange='',
                          routing_key='hello2',
                          body='Hello World!',
                          # 消息持久话用,主要用作宕机的时候,估计是写入本地硬盘了
                          properties=pika.BasicProperties(
                              delivery_mode=2,  # make message persistent
                          )
                      )

    # 关闭连接
    connection.close()


if __name__ == "__main__":
    publish_message()

4.2.3 先运行消费者代码(recv_msg_safe.py)再运行生产者代码(send_msg_safe.py) 执行结果如下:

4.3 广播模式

4.3.1 在和setting同级的目录下创建一个叫fanout_receive.py的消费者文件,其内容如下:

py 复制代码
# 广播模式
import pika

# credentials = pika.PlainCredentials('guest', 'guest')
# connection = pika.BlockingConnection(pika.ConnectionParameters(
#     host='localhost', credentials=credentials))
# 在setting中如果不配置BROKER_URL和CELERY_RESULT_BACKEND的情况下请使用上边的代码
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs', exchange_type='fanout')  # 指定发送类型
# 必须能过queue来收消息
result = channel.queue_declare("", exclusive=True)  # 不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue
channel.queue_bind(exchange='logs', queue=queue_name)  # 随机生成的Q,绑定到exchange上面。
print(' [*] Waiting for logs. To exit press CTRL+C')


def callback(ch, method, properties, body):
    print(" [x] %r" % body)


channel.basic_consume(on_message_callback=callback, queue=queue_name, auto_ack=True)
channel.start_consuming()

4.3.2 在和setting同级的目录下创建一个叫fanout_send.py的生产者文件,其内容如下:

py 复制代码
# 通过广播发消息
import pika
import sys

# credentials = pika.PlainCredentials('guest', 'guest')
# connection = pika.BlockingConnection(pika.ConnectionParameters(
#     host='localhost', credentials=credentials))
# 在setting中如果不配置BROKER_URL和CELERY_RESULT_BACKEND的情况下请使用上边的代码
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs', exchange_type='fanout') #发送消息类型为fanout,就是给所有人发消息

# 如果等于空,就输出hello world!
message = ' '.join(sys.argv[1:]) or "info: Hello World!"


channel.basic_publish(exchange='logs',
                      routing_key='',  # routing_key 转发到那个队列,因为是广播所以不用写了
                      body=message)

print(" [x] Sent %r" % message)
connection.close()

4.3.3 先运行消费者代码(fanout_receive.py)再运行生产者代码(fanout_send.py) 执行结果如下:

4.4 组播模式

4.4.1 在和setting同级的目录下创建一个叫direct_recv.py的消费者文件,其内容如下:

py 复制代码
import pika
import sys

credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost', credentials=credentials))

channel = connection.channel() 

channel.exchange_declare(exchange='direct_logs', exchange_type='direct')
result = channel.queue_declare("", exclusive=True)
queue_name = result.method.queue

severities = sys.argv[1:]   # 接收那些消息(指info,还是空),没写就报错
if not severities:
    sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])  # 定义了三种接收消息方式info,warning,error
    sys.exit(1)

for severity in severities:  # [error  info  warning],循环severities
    channel.queue_bind(exchange='direct_logs',
                       queue=queue_name,
                       routing_key=severity)  # 循环绑定关键字
print(' [*] Waiting for logs. To exit press CTRL+C')


def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))


channel.basic_consume(on_message_callback=callback, queue=queue_name,)
channel.start_consuming()

4.4.2 在和setting同级的目录下创建一个叫direct_send.py的生产者文件,其内容如下:

py 复制代码
# 组播
import pika
import sys

credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost', credentials=credentials))

channel = connection.channel()

channel.exchange_declare(exchange='direct_logs',exchange_type='direct') #指定类型

severity = sys.argv[1] if len(sys.argv) > 1 else 'info'  #严重程序,级别;判定条件到底是info,还是空,后面接消息

message = ' '.join(sys.argv[2:]) or 'Hello World!'  #消息

channel.basic_publish(exchange='direct_logs',
                      routing_key=severity, #绑定的是:error  指定关键字(哪些队列绑定了,这个级别,那些队列就可以收到这个消息)
                      body=message)

print(" [x] Sent %r:%r" % (severity, message))
connection.close()

4.4.3 先运行消费者代码(direct_recv.py)再运行生产者代码(direct_send.py) 执行结果如下:

4.5 更细致的topic模式

4.5.1 在和setting同级的目录下创建一个叫topic_recv.py的消费者文件,其内容如下:

py 复制代码
import pika
import sys

credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost', credentials=credentials))

channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',exchange_type='topic')

result = channel.queue_declare("", exclusive=True)
queue_name = result.method.queue

binding_keys = sys.argv[1:]
if not binding_keys:
    print("sys.argv[0]", sys.argv[0])
    sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
    sys.exit(1)

for binding_key in binding_keys:
    channel.queue_bind(exchange='topic_logs',
                       queue=queue_name,
                       routing_key=binding_key)

print(' [*] Waiting for logs. To exit press CTRL+C')


def callback(ch, method, properties, body):
    print(" [x] %r:%r" % (method.routing_key, body))


channel.basic_consume(on_message_callback=callback,queue=queue_name)

channel.start_consuming()

4.5.2 在和setting同级的目录下创建一个叫topic_send.py的生产者文件,其内容如下:

py 复制代码
import pika
import sys

credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost', credentials=credentials))

channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',exchange_type='topic') #指定类型

routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'

message = ' '.join(sys.argv[2:]) or 'Hello World!'  #消息

channel.basic_publish(exchange='topic_logs',
                      routing_key=routing_key,
                      body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

4.5.3 先运行消费者代码(topic_recv.py)再运行生产者代码(topic_send.py) 执行结果如下:

4.6 Remote procedure call (RPC) 双向模式

4.6.1 在和setting同级的目录下创建一个叫rpc_client.py的消费者文件,其内容如下:

py 复制代码
import pika
import uuid
import time


# 斐波那契数列 前两个数相加依次排列
class FibonacciRpcClient(object):
    def __init__(self):
        # 赋值变量,一个循环值
        self.response = None
        # 链接远程
        # self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        #         host='localhost'))
        credentials = pika.PlainCredentials('guest', 'guest')
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost', credentials=credentials))

        self.channel = self.connection.channel()

        # 生成随机queue
        result = self.channel.queue_declare("", exclusive=True)
        # 随机取queue名字,发给消费端
        self.callback_queue = result.method.queue

        # self.on_response 回调函数:只要收到消息就调用这个函数。
        # 声明收到消息后就 收queue=self.callback_queue内的消息  准备接受命令结果
        self.channel.basic_consume(queue=self.callback_queue,
                                   auto_ack=True, on_message_callback=self.on_response)

    # 收到消息就调用
    # ch 管道内存对象地址
    # method 消息发给哪个queue
    # body数据对象
    def on_response(self, ch, method, props, body):
        # 判断本机生成的ID 与 生产端发过来的ID是否相等
        if self.corr_id == props.correlation_id:
            # 将body值 赋值给self.response
            self.response = body

    def call(self, n):

        # 随机一次唯一的字符串
        self.corr_id = str(uuid.uuid4())

        # routing_key='rpc_queue' 发一个消息到rpc_queue内
        self.channel.basic_publish(exchange='',
                                   routing_key='rpc_queue',
                                   properties=pika.BasicProperties(
                                         # 执行命令之后结果返回给self.callaback_queue这个队列中
                                         reply_to=self.callback_queue,
                                         # 生成UUID 发送给消费端
                                         correlation_id=self.corr_id,),
                                   # 发的消息,必须传入字符串,不能传数字
                                   body=str(n))
        # 没有数据就循环收
        while self.response is None:
            # 非阻塞版的start_consuming()
            # 没有消息不阻塞  检查队列里有没有新消息,但不会阻塞
            self.connection.process_data_events()
            print("no msg...")
            time.sleep(0.5)
        return int(self.response)


# 实例化
fibonacci_rpc = FibonacciRpcClient()


response = fibonacci_rpc.call(5)
print(" [.] Got %r" % response)

4.6.2 在和setting同级的目录下创建一个叫rpc_server.py的生产者文件,其内容如下:

py 复制代码
#_*_coding:utf-8_*_
import pika
import time
# 链接socket
credentials = pika.PlainCredentials('guest', 'guest')
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost', credentials=credentials))

channel = connection.channel()

# 生成rpc queue  在这里声明的所以先启动这个
channel.queue_declare(queue='rpc_queue')

# 斐波那契数列
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)


# 收到消息就调用
# ch 管道内存对象地址
# method 消息发给哪个queue
# props 返回给消费的返回参数
# body数据对象
def on_request(ch, method, props, body):
    n = int(body)

    print(" [.] fib(%s)" % n)
    # 调用斐波那契函数 传入结果
    response = fib(n)

    ch.basic_publish(exchange='',
                     # 生产端随机生成的queue
                     routing_key=props.reply_to,
                     # 获取UUID唯一 字符串数值
                     properties=pika.BasicProperties(correlation_id=props.correlation_id),
                     # 消息返回给生产端
                     body=str(response))
    # 确保任务完成
    # ch.basic_ack(delivery_tag = method.delivery_tag)


# 每次只处理一个任务
# channel.basic_qos(prefetch_count=1)
# rpc_queue收到消息:调用on_request回调函数
# queue='rpc_queue'从rpc内收
channel.basic_consume(queue="rpc_queue",
                      auto_ack=True,
                      on_message_callback=on_request)
print(" [x] Awaiting RPC requests")
channel.start_consuming()

4.6.3 先运行消费者代码(rpc_server.py)再运行生产者代码(rpc_client.py) 执行结果如下:

参考实现1

参考实现2

参考实现3

相关推荐
至天13 分钟前
MacPorts 中安装高/低版本软件方式,以 RabbitMQ 为例
macos·rabbitmq·安装·降级·升级·macports·checksums
codists16 分钟前
《Django 5 By Example》读后感
python·django
Joyner201841 分钟前
python 中要验证dataloader必须是list,否则报错
开发语言·python
新知图书1 小时前
R语言函数简介
开发语言·python·r语言
君逸~~1 小时前
环境搭建——CUDA、Python、Pytorch
开发语言·人工智能·pytorch·python·深度学习
wang_yb1 小时前
从混沌到秩序:Python的依赖管理工具分析
python·databook
engchina2 小时前
PyCharm 中打印完整的 DataFrame
ide·python·pycharm·dataframe
Wallace Zhang2 小时前
Python | 虚拟环境02 - 创建与激活、去激活
python
西柚小萌新2 小时前
python--在服务器上面创建conda环境
服务器·python·conda