环境搭建——CUDA、Python、Pytorch

安装anaconda

创建虚拟环境

conda create -n env_name python==python版本

安装pytorch

在官网中下载:

https://pytorch.org/get-started/previous-versions/

https://pytorch.org/get-started/locally/

测试cuda是否可用

python 复制代码
import torch

# 打印设备信息
print("Available devices:")
print(torch.device('cpu'))
print(torch.device('cuda'))
print(torch.device('cuda:1'))

# 检查 CUDA 是否可用
is_cuda_available = torch.cuda.is_available()
print(f"CUDA is available: {is_cuda_available}")

# 获取可用的 GPU 数量
gpu_count = torch.cuda.device_count()
print(f"Number of GPUs available: {gpu_count}")

# 打印每个 GPU 的名称
if is_cuda_available:
    for i in range(gpu_count):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
    print("No CUDA-capable GPU is available.")

:::success
Available devices:

cpu

cuda

cuda:1

CUDA is available: True

Number of GPUs available: 2

GPU 0: NVIDIA GeForce RTX 3090

GPU 1: NVIDIA GeForce RTX 3090

:::

在测试cuda可用之后再去安装依赖库

:::color1

pip install -r requirements.txt

:::

对应关系

相关推荐
半桶水专家3 小时前
go语言中的结构体嵌入详解
开发语言·后端·golang
冰西瓜6004 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术4 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技4 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
在屏幕前出油4 小时前
二、Python面向对象编程基础——理解self
开发语言·python
Java后端的Ai之路4 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟5 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
阿方索5 小时前
python文件与数据格式化
开发语言·python
喜欢吃豆5 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站5 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能