【大模型】大模型项目选择 RAGvs微调?

RAG

输入问题,在知识库匹配知识,构建提示词:基于{知识}回答{问题}

微调

用知识问答对重新训练大模型权重,输入问题到调整后的大模型

如何选择

如果业务要求较高,RAG和微调可以一起使用

1-动态数据

复制代码
选择RAG
原因:RAG将数据存放到数据库即可,微调需要重新训练模型,微调成本大

2-模型能力定制

复制代码
选择微调
原因:用户想要回答有特殊口吻/专业内容等,如猫娘大模型/阅读研报/文本抽取内容,微调可以定制回答

3-幻觉

复制代码
选择RAG
原因:带有上下文知识的输入会减少模型幻觉的产生

4-可解释性

复制代码
选择RAG
原因:RAG可以给用户输出知识库数据供参考,提高回答可信度

5-成本

复制代码
选择RAG
原因:RAG只需要构建出知识图谱/知识数据库即可,而微调需要考虑数据集质量以及不断训练模型,微调成本高

6-依赖大模型通用能力

复制代码
选择RAG
原因:微调会改变大模型的权重,提高模型专业能力,但会降低模型通用能力(模型遗忘)

7-延迟

复制代码
选择微调
原因:RAG会有如知识库检索、排序、匹配等操作,会耗时

8-智能设备

复制代码
选择微调
原因:移动端小模型,业务场景需要突出专业能力
相关推荐
liuyunshengsir1 小时前
利用coze工作流制作一个自动生成PPT的智能体
大模型·大模型工作流
mengyoufengyu1 小时前
DeepSeek12-Open WebUI 知识库配置详细步骤
人工智能·大模型·deepseek
山顶夕景1 小时前
【LLM-Agent】智能体的记忆缓存设计
大模型·agent·记忆模块·记忆缓存
人肉推土机1 天前
AI Agent 架构设计:ReAct 与 Self-Ask 模式对比与分析
人工智能·大模型·llm·agent
中杯可乐多加冰1 天前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek
audyxiao0012 天前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
CM莫问2 天前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
大模型铲屎官3 天前
【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
人工智能·pytorch·python·深度学习·大模型·llm·mnist
一 铭3 天前
Github Copilot新特性:Copilot Spaces-成为某个主题的专家
人工智能·大模型·llm
致Great3 天前
Gemini开源项目DeepResearch:基于LangGraph的智能研究代理技术原理与实现
大模型