自动驾驶AVM环视算法--python版本的超广角投影模式

c语言版本和算法原理的可以查看本人的其他文档。《自动驾驶AVM环视算法--更新超广角视图算法和exe测试demo》本文档进用于展示部分代码的视线,获取方式网盘自行获取(非免费介意勿下载):链接: https://pan.baidu.com/s/1oYChfFYbWtrSvOgQzw7nYQ 提取码: 6a35 。

测试的环境:

以下是主运行函数的部分代码(仅供参考):

复制代码
import cv2 
from runAngle import * 

# 导入 MyClass 类  
from runAngle import avmobjData  
flag =0#设置视角,0f 1b 2l 3r
# 创建类的实例  
runAngle = avmobjData()  

F_open=True
B_open=True
L_open=True
R_open=True
F_video=cv2.VideoCapture("video/Front.avi")
if F_video.isOpened():
    F_ocpn,F_frame=F_video.read()
else:
    F_open=False
B_video=cv2.VideoCapture("video/Back.avi")
if B_video.isOpened():
    B_ocpn,B_frame=B_video.read()
else:
    B_open=False
L_video=cv2.VideoCapture("video/Left.avi")
if L_video.isOpened():
    L_ocpn,L_frame=L_video.read()
else:
    L_open=False
R_video=cv2.VideoCapture("video/Right.avi")
if R_video.isOpened():
    R_ocpn,R_frame=R_video.read()
else:
    R_open=False

print(F_open,B_open,L_open,R_open)

if flag==0:
    while F_open :
        F_ret,F_frame=F_video.read()
        srcH, srcW, _ = F_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(F_frame, srcW, srcH, dstW, dstH)     
        
        if F_frame is None:
            break
        if F_ret==True :           
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    F_video.release()
    cv2.destroyAllWindows()
if flag==1:
    while B_open:
        B_ret,B_frame=B_video.read()
        srcH, srcW, _ = B_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(B_frame, srcW, srcH, dstW, dstH)     
        if B_frame is None :
            break
        if B_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    B_video.release()
    cv2.destroyAllWindows()
if flag==2:
    while L_open:
        L_ret,L_frame=L_video.read()
        srcH, srcW, _ = L_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(L_frame, srcW, srcH, dstW, dstH)     
        
        if L_frame is None:
            break
        if L_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    L_video.release()
    cv2.destroyAllWindows()
if flag==3:
    while R_open:
        R_ret,R_frame=R_video.read()
        srcH, srcW, _ = R_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(R_frame, srcW, srcH, dstW, dstH)     
        if R_frame is None:
            break
        if R_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    R_video.release()
    cv2.destroyAllWindows()

注:当前python的版本效率比较低,需要加速的可以自行优化加速代码,实现的过程是从C代码直接转换过来的,没有进行任何的优化加速。

测试实现的效果:

相关推荐
许泽宇的技术分享8 分钟前
Windows MCP.Net:解锁AI助手的Windows桌面自动化潜能
人工智能·windows·.net·mcp
从后端到QT13 分钟前
大语言模型本地部署之转录文本总结
人工智能·语言模型·自然语言处理
AI新兵17 分钟前
AI大事记13:GPT 与 BERT 的范式之争(上)
人工智能·gpt·bert
文火冰糖的硅基工坊18 分钟前
[人工智能-大模型-43]:模型层技术 - 强化学学习:学习的目标、收敛条件、评估依据、应用到的模型、应用场景 - 通俗易懂。
人工智能·学习
Fibocom广和通26 分钟前
禾赛科技与广和通战略合作,联合推出机器人解决方案加速具身智能商业化落地
人工智能
飞哥数智坊26 分钟前
Claude Skills 自定义实战:提炼会议纪要并推送企业微信
人工智能·claude·chatglm (智谱)
golang学习记32 分钟前
性能飙升4倍,苹果刚发布的M5给人看呆了
人工智能·后端
golang学习记33 分钟前
快手推出AI编程IDE:自主编程时代已来!
人工智能
皮皮学姐分享-ppx36 分钟前
上市公司CEO IT背景数据(2007-2024)
大数据·人工智能·经验分享·科技·区块链