自动驾驶AVM环视算法--python版本的超广角投影模式

c语言版本和算法原理的可以查看本人的其他文档。《自动驾驶AVM环视算法--更新超广角视图算法和exe测试demo》本文档进用于展示部分代码的视线,获取方式网盘自行获取(非免费介意勿下载):链接: https://pan.baidu.com/s/1oYChfFYbWtrSvOgQzw7nYQ 提取码: 6a35 。

测试的环境:

以下是主运行函数的部分代码(仅供参考):

import cv2 
from runAngle import * 

# 导入 MyClass 类  
from runAngle import avmobjData  
flag =0#设置视角,0f 1b 2l 3r
# 创建类的实例  
runAngle = avmobjData()  

F_open=True
B_open=True
L_open=True
R_open=True
F_video=cv2.VideoCapture("video/Front.avi")
if F_video.isOpened():
    F_ocpn,F_frame=F_video.read()
else:
    F_open=False
B_video=cv2.VideoCapture("video/Back.avi")
if B_video.isOpened():
    B_ocpn,B_frame=B_video.read()
else:
    B_open=False
L_video=cv2.VideoCapture("video/Left.avi")
if L_video.isOpened():
    L_ocpn,L_frame=L_video.read()
else:
    L_open=False
R_video=cv2.VideoCapture("video/Right.avi")
if R_video.isOpened():
    R_ocpn,R_frame=R_video.read()
else:
    R_open=False

print(F_open,B_open,L_open,R_open)

if flag==0:
    while F_open :
        F_ret,F_frame=F_video.read()
        srcH, srcW, _ = F_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(F_frame, srcW, srcH, dstW, dstH)     
        
        if F_frame is None:
            break
        if F_ret==True :           
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    F_video.release()
    cv2.destroyAllWindows()
if flag==1:
    while B_open:
        B_ret,B_frame=B_video.read()
        srcH, srcW, _ = B_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(B_frame, srcW, srcH, dstW, dstH)     
        if B_frame is None :
            break
        if B_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    B_video.release()
    cv2.destroyAllWindows()
if flag==2:
    while L_open:
        L_ret,L_frame=L_video.read()
        srcH, srcW, _ = L_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(L_frame, srcW, srcH, dstW, dstH)     
        
        if L_frame is None:
            break
        if L_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    L_video.release()
    cv2.destroyAllWindows()
if flag==3:
    while R_open:
        R_ret,R_frame=R_video.read()
        srcH, srcW, _ = R_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(R_frame, srcW, srcH, dstW, dstH)     
        if R_frame is None:
            break
        if R_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    R_video.release()
    cv2.destroyAllWindows()

注:当前python的版本效率比较低,需要加速的可以自行优化加速代码,实现的过程是从C代码直接转换过来的,没有进行任何的优化加速。

测试实现的效果:

相关推荐
不一样的信息安全13 分钟前
深入解析DeepSeek智慧城市应用中的交通流量预测API接口
人工智能
给生活加糖!18 分钟前
智能交通系统(Intelligent Transportation Systems):智慧城市中的交通革新
网络·人工智能·智慧城市
可为测控28 分钟前
图像处理基础(3):均值滤波器及其变种
图像处理·人工智能·均值算法
刘立军33 分钟前
本地大模型编程实战(20)用langgraph和智能体实现RAG(Retrieval Augmented Generation,检索增强生成)(4)
人工智能·后端·llm
Abdullah al-Sa1 小时前
Docker教程(喂饭级!)
c++·人工智能·docker·容器
神经星星1 小时前
无机材料逆合成效率飙升,韩国团队推出Retrieval-Retro,成果入选NeurIPS 2024
人工智能·深度学习·机器学习
大数据追光猿1 小时前
【深度学习】Pytorch项目实战-基于协同过滤实现物品推荐系统
人工智能·pytorch·python·深度学习·ai编程·推荐算法
CodeJourney.1 小时前
EndNote与Word关联:科研写作的高效助力
数据库·人工智能·算法·架构
jingwang-cs1 小时前
内外网文件传输 安全、可控、便捷的跨网数据传输方案
人工智能·后端·安全
乐享数科1 小时前
乐享数科:供应链金融—三个不同阶段的融资模式
大数据·人工智能·金融