自动驾驶AVM环视算法--python版本的超广角投影模式

c语言版本和算法原理的可以查看本人的其他文档。《自动驾驶AVM环视算法--更新超广角视图算法和exe测试demo》本文档进用于展示部分代码的视线,获取方式网盘自行获取(非免费介意勿下载):链接: https://pan.baidu.com/s/1oYChfFYbWtrSvOgQzw7nYQ 提取码: 6a35 。

测试的环境:

以下是主运行函数的部分代码(仅供参考):

复制代码
import cv2 
from runAngle import * 

# 导入 MyClass 类  
from runAngle import avmobjData  
flag =0#设置视角,0f 1b 2l 3r
# 创建类的实例  
runAngle = avmobjData()  

F_open=True
B_open=True
L_open=True
R_open=True
F_video=cv2.VideoCapture("video/Front.avi")
if F_video.isOpened():
    F_ocpn,F_frame=F_video.read()
else:
    F_open=False
B_video=cv2.VideoCapture("video/Back.avi")
if B_video.isOpened():
    B_ocpn,B_frame=B_video.read()
else:
    B_open=False
L_video=cv2.VideoCapture("video/Left.avi")
if L_video.isOpened():
    L_ocpn,L_frame=L_video.read()
else:
    L_open=False
R_video=cv2.VideoCapture("video/Right.avi")
if R_video.isOpened():
    R_ocpn,R_frame=R_video.read()
else:
    R_open=False

print(F_open,B_open,L_open,R_open)

if flag==0:
    while F_open :
        F_ret,F_frame=F_video.read()
        srcH, srcW, _ = F_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(F_frame, srcW, srcH, dstW, dstH)     
        
        if F_frame is None:
            break
        if F_ret==True :           
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    F_video.release()
    cv2.destroyAllWindows()
if flag==1:
    while B_open:
        B_ret,B_frame=B_video.read()
        srcH, srcW, _ = B_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(B_frame, srcW, srcH, dstW, dstH)     
        if B_frame is None :
            break
        if B_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    B_video.release()
    cv2.destroyAllWindows()
if flag==2:
    while L_open:
        L_ret,L_frame=L_video.read()
        srcH, srcW, _ = L_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(L_frame, srcW, srcH, dstW, dstH)     
        
        if L_frame is None:
            break
        if L_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    L_video.release()
    cv2.destroyAllWindows()
if flag==3:
    while R_open:
        R_ret,R_frame=R_video.read()
        srcH, srcW, _ = R_frame.shape  
        # 设置目标图像的宽度和高度  
        dstW = srcH * 3  
        dstH = srcH  
        # 调用 js_imgRect 函数  
        Dstimg = runAngle.js_imgRect(R_frame, srcW, srcH, dstW, dstH)     
        if R_frame is None:
            break
        if R_ret==True:
            cv2.imshow("avmAngle",Dstimg)
            if cv2.waitKey(25) & 0xFF==27:
                break
    R_video.release()
    cv2.destroyAllWindows()

注:当前python的版本效率比较低,需要加速的可以自行优化加速代码,实现的过程是从C代码直接转换过来的,没有进行任何的优化加速。

测试实现的效果:

相关推荐
大江东去浪淘尽千古风流人物8 分钟前
【DSP】xiBoxFilter_3x3_U8 dsp VS cmodel
linux·运维·人工智能·算法·vr
超级小龙虾18 分钟前
Augment Context Engine MCP
人工智能
行业探路者19 分钟前
健康宣教二维码是什么?主要有哪些创新优势?
人工智能·学习·音视频·二维码·产品介绍
灏瀚星空26 分钟前
基于 Python 与 GitHub,打造个人专属本地化思维导图工具全流程方案(上)
开发语言·人工智能·经验分享·笔记·python·个人开发·visual studio
xcLeigh27 分钟前
AI的提示词专栏:Prompt 与 Python Pandas 的结合使用指南
人工智能·python·ai·prompt·提示词
羽小暮28 分钟前
Yolo11环境配置win+Python+Anaconda--小白目标检测学习专用(超详细)
人工智能·yolo·目标检测
草莓熊Lotso28 分钟前
Python 入门超详细指南:环境搭建 + 核心优势 + 应用场景(零基础友好)
运维·开发语言·人工智能·python·深度学习·学习·pycharm
雪寻梅*30 分钟前
(深度学习)python+yolov11训练自己的数据集
人工智能·python·深度学习·yolo
tq108643 分钟前
AI 重塑三层双链:从金字塔结构到人智协同网络
人工智能
砚边数影1 小时前
AI开发依赖引入:DL4J / Java-ML 框架 Maven 坐标配置
java·数据库·人工智能·深度学习·机器学习·ai·maven