Ubuntu将深度学习环境配置移植到新电脑

这里默认新电脑已经安装好了conda、CUDA这些,可以直接创建新的虚拟环境。

参考链接:

基础知识

创建和管理Conda环境

创建新环境:conda create -n myenv python=3.8(其中myenv是环境名,python=3.8指定Python版本)

激活环境:conda activate myenv

退出环境:conda deactivate

列出所有环境:conda env listconda info --envs

删除环境:conda remove --name myenv --allconda remove -n myenv --all

列出当前环境下已安装包:pip list

使用conda

  1. 导出当前环境

    在你的旧电脑上,使用以下命令生成 environment.yaml 文件:

    复制代码
    conda env export > environment.yaml
  2. 在新电脑上创建新环境

    environment.yaml 文件复制到新电脑后,使用以下命令创建新环境:

    复制代码
    conda env create -f environment.yaml -n newenv
  3. 激活新环境

    创建完成后,激活新环境:

    复制代码
    conda activate newenv

注意事项

  • 确保 environment.yaml 文件在新电脑上可用。
  • 如果 environment.yaml 中的路径或特定平台依赖(如 Windows 和 Linux 之间的差异)导致问题,可以手动编辑 environment.yaml 文件,删除或修改不必要的部分。
  • 如果新电脑上已有相同名称的环境,确保先删除该环境,或者在 environment.yaml 中选择一个不同的名称。

使用pip(不推荐)

由于旧电脑上的包有的是通过conda安装的有的是通过pip安装的,使用上面conda导出的yaml文件能保留完整信息,如果像下面这样通过pip导出txt文件则会出现各种问题。

老电脑

  1. 激活环境:conda activate oldenv
  2. pip freeze > requirements.txt 导出 requirement.txt,直接导出在主目录下

新电脑

  1. requirement.txt 放在主目录下
  2. 创建并激活新环境
  3. 执行命令 pip install -r requirements.txt ,顺利的话即可一键安装完所需要的第三方库
  4. 但是如果原环境配置较复杂,则可能需要删除一些特定路径,可能还需要修改一些包的版本
相关推荐
kyle~2 小时前
深度学习---框架流程
人工智能·深度学习
enyp802 小时前
麒麟系统(基于Ubuntu)上使用Qt编译时遇到“type_traits文件未找到”的错误
linux·qt·ubuntu
明天一定早睡早起2 小时前
Ubuntu20.04 Ollama 配置相关
ubuntu·llama
烟锁池塘柳04 小时前
【深度学习】评估模型复杂度:GFLOPs与Params详解
人工智能·深度学习
白熊1884 小时前
【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别
人工智能·深度学习·计算机视觉
毒果4 小时前
深度学习大模型: AI 阅卷替代人工阅卷
人工智能·深度学习
xMathematics6 小时前
深度学习与SLAM特征提取融合:技术突破与应用前景
人工智能·深度学习
蹦蹦跳跳真可爱5896 小时前
Python----深度学习(基于DNN的吃鸡预测)
python·深度学习·dnn
每天都要写算法(努力版)6 小时前
【神经网络与深度学习】批标准化(Batch Normalization)和层标准化(Layer Normalization)
深度学习·神经网络·batch
墨顿6 小时前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态