Ubuntu将深度学习环境配置移植到新电脑

这里默认新电脑已经安装好了conda、CUDA这些,可以直接创建新的虚拟环境。

参考链接:

基础知识

创建和管理Conda环境

创建新环境:conda create -n myenv python=3.8(其中myenv是环境名,python=3.8指定Python版本)

激活环境:conda activate myenv

退出环境:conda deactivate

列出所有环境:conda env listconda info --envs

删除环境:conda remove --name myenv --allconda remove -n myenv --all

列出当前环境下已安装包:pip list

使用conda

  1. 导出当前环境

    在你的旧电脑上,使用以下命令生成 environment.yaml 文件:

    复制代码
    conda env export > environment.yaml
  2. 在新电脑上创建新环境

    environment.yaml 文件复制到新电脑后,使用以下命令创建新环境:

    复制代码
    conda env create -f environment.yaml -n newenv
  3. 激活新环境

    创建完成后,激活新环境:

    复制代码
    conda activate newenv

注意事项

  • 确保 environment.yaml 文件在新电脑上可用。
  • 如果 environment.yaml 中的路径或特定平台依赖(如 Windows 和 Linux 之间的差异)导致问题,可以手动编辑 environment.yaml 文件,删除或修改不必要的部分。
  • 如果新电脑上已有相同名称的环境,确保先删除该环境,或者在 environment.yaml 中选择一个不同的名称。

使用pip(不推荐)

由于旧电脑上的包有的是通过conda安装的有的是通过pip安装的,使用上面conda导出的yaml文件能保留完整信息,如果像下面这样通过pip导出txt文件则会出现各种问题。

老电脑

  1. 激活环境:conda activate oldenv
  2. pip freeze > requirements.txt 导出 requirement.txt,直接导出在主目录下

新电脑

  1. requirement.txt 放在主目录下
  2. 创建并激活新环境
  3. 执行命令 pip install -r requirements.txt ,顺利的话即可一键安装完所需要的第三方库
  4. 但是如果原环境配置较复杂,则可能需要删除一些特定路径,可能还需要修改一些包的版本
相关推荐
墨利昂3 小时前
机器学习和深度学习模型训练流程
人工智能·深度学习·机器学习
麦麦大数据4 小时前
F031 Vue+Flask深度学习+机器学习多功能识别系统
vue.js·深度学习·flask
超级大福宝4 小时前
在 Linux 下修改百度网盘的缩放比例
linux·运维·服务器·ubuntu
java1234_小锋4 小时前
TensorFlow2 Python深度学习 - 模型保存与加载
python·深度学习·tensorflow·tensorflow2
CoovallyAIHub5 小时前
IDEA研究院发布Rex-Omni:3B参数MLLM重塑目标检测,零样本性能超越DINO
深度学习·算法·计算机视觉
樱花的浪漫6 小时前
Cuda reduce算子实现与优化
数据库·人工智能·深度学习·神经网络·机器学习·自然语言处理
饭来_6 小时前
ubuntu 中使用 lftp 命令行工具传输文件
运维·ubuntu·nas
B站_计算机毕业设计之家6 小时前
基于大数据股票数据分析与预测系统 LSTM神经网络算法 股票价格预测 Tensorflow深度学习 机器学习 Flask框架 东方财富(全套资料)✅
深度学习·神经网络·机器学习·金融·股票·预测·股价
java1234_小锋6 小时前
TensorFlow2 Python深度学习 - 生成对抗网络(GAN)实例
python·深度学习·tensorflow·tensorflow2
CoovallyAIHub7 小时前
一夜之间,大模型处理长文本的难题被DeepSeek新模型彻底颠覆!
深度学习·算法·计算机视觉