Ubuntu将深度学习环境配置移植到新电脑

这里默认新电脑已经安装好了conda、CUDA这些,可以直接创建新的虚拟环境。

参考链接:

基础知识

创建和管理Conda环境

创建新环境:conda create -n myenv python=3.8(其中myenv是环境名,python=3.8指定Python版本)

激活环境:conda activate myenv

退出环境:conda deactivate

列出所有环境:conda env listconda info --envs

删除环境:conda remove --name myenv --allconda remove -n myenv --all

列出当前环境下已安装包:pip list

使用conda

  1. 导出当前环境

    在你的旧电脑上,使用以下命令生成 environment.yaml 文件:

    复制代码
    conda env export > environment.yaml
  2. 在新电脑上创建新环境

    environment.yaml 文件复制到新电脑后,使用以下命令创建新环境:

    复制代码
    conda env create -f environment.yaml -n newenv
  3. 激活新环境

    创建完成后,激活新环境:

    复制代码
    conda activate newenv

注意事项

  • 确保 environment.yaml 文件在新电脑上可用。
  • 如果 environment.yaml 中的路径或特定平台依赖(如 Windows 和 Linux 之间的差异)导致问题,可以手动编辑 environment.yaml 文件,删除或修改不必要的部分。
  • 如果新电脑上已有相同名称的环境,确保先删除该环境,或者在 environment.yaml 中选择一个不同的名称。

使用pip(不推荐)

由于旧电脑上的包有的是通过conda安装的有的是通过pip安装的,使用上面conda导出的yaml文件能保留完整信息,如果像下面这样通过pip导出txt文件则会出现各种问题。

老电脑

  1. 激活环境:conda activate oldenv
  2. pip freeze > requirements.txt 导出 requirement.txt,直接导出在主目录下

新电脑

  1. requirement.txt 放在主目录下
  2. 创建并激活新环境
  3. 执行命令 pip install -r requirements.txt ,顺利的话即可一键安装完所需要的第三方库
  4. 但是如果原环境配置较复杂,则可能需要删除一些特定路径,可能还需要修改一些包的版本
相关推荐
赴遥18 小时前
WSL2下Ubuntu20.04图形化环境配置
ubuntu·wsl2·xfce4·图形化页面
hongjianMa20 小时前
【论文阅读】Hypercomplex Prompt-aware Multimodal Recommendation
论文阅读·python·深度学习·机器学习·prompt·推荐系统
现在,此刻21 小时前
李沐深度学习笔记D3-线性回归
笔记·深度学习·线性回归
能来帮帮蒟蒻吗21 小时前
深度学习(2)—— 神经网络与训练
人工智能·深度学习·神经网络
知行力1 天前
【GitHub每日速递 20251111】PyTorch:GPU加速、动态网络,深度学习平台的不二之选!
pytorch·深度学习·github
Theliars1 天前
Ubuntu 上使用 VSCode 调试 C++ (CMake 项目) 指南
c++·vscode·ubuntu·cmake
ifeng09181 天前
HarmonyOS资源加载进阶:惰性加载、预加载与缓存机制
深度学习·缓存·harmonyos
Danceful_YJ1 天前
34.来自Transformers的双向编码器表示(BERT)
人工智能·深度学习·bert
love530love1 天前
【笔记】xFormers版本与PyTorch、CUDA对应关系及正确安装方法详解
人工智能·pytorch·windows·笔记·python·深度学习·xformers
kev_gogo1 天前
【链式法则】神经网络中求导时w既是常数也是自变量的辨析(能否对常数求导?)
人工智能·深度学习·神经网络