Ubuntu将深度学习环境配置移植到新电脑

这里默认新电脑已经安装好了conda、CUDA这些,可以直接创建新的虚拟环境。

参考链接:

基础知识

创建和管理Conda环境

创建新环境:conda create -n myenv python=3.8(其中myenv是环境名,python=3.8指定Python版本)

激活环境:conda activate myenv

退出环境:conda deactivate

列出所有环境:conda env listconda info --envs

删除环境:conda remove --name myenv --allconda remove -n myenv --all

列出当前环境下已安装包:pip list

使用conda

  1. 导出当前环境

    在你的旧电脑上,使用以下命令生成 environment.yaml 文件:

    复制代码
    conda env export > environment.yaml
  2. 在新电脑上创建新环境

    environment.yaml 文件复制到新电脑后,使用以下命令创建新环境:

    复制代码
    conda env create -f environment.yaml -n newenv
  3. 激活新环境

    创建完成后,激活新环境:

    复制代码
    conda activate newenv

注意事项

  • 确保 environment.yaml 文件在新电脑上可用。
  • 如果 environment.yaml 中的路径或特定平台依赖(如 Windows 和 Linux 之间的差异)导致问题,可以手动编辑 environment.yaml 文件,删除或修改不必要的部分。
  • 如果新电脑上已有相同名称的环境,确保先删除该环境,或者在 environment.yaml 中选择一个不同的名称。

使用pip(不推荐)

由于旧电脑上的包有的是通过conda安装的有的是通过pip安装的,使用上面conda导出的yaml文件能保留完整信息,如果像下面这样通过pip导出txt文件则会出现各种问题。

老电脑

  1. 激活环境:conda activate oldenv
  2. pip freeze > requirements.txt 导出 requirement.txt,直接导出在主目录下

新电脑

  1. requirement.txt 放在主目录下
  2. 创建并激活新环境
  3. 执行命令 pip install -r requirements.txt ,顺利的话即可一键安装完所需要的第三方库
  4. 但是如果原环境配置较复杂,则可能需要删除一些特定路径,可能还需要修改一些包的版本
相关推荐
是小蟹呀^36 分钟前
【论文阅读12】Circle Loss:一统 Softmax 与 Triplet,从“线性”到“圆形”的优化视角
深度学习·分类·circle loss
gorgeous(๑>؂<๑)1 小时前
【ICLR26-Oral Paper-Meta】先见之明:揭秘语言预训练中大型语言模型的视觉先验
人工智能·深度学习·算法·机器学习·语言模型
陈天伟教授1 小时前
人工智能应用- 人机对战:01. AI 游戏
人工智能·深度学习·神经网络·游戏·自然语言处理·机器翻译
肾透侧视攻城狮1 小时前
《超越安装:构建可维护、高性能的TensorFlow专业开发环境》
人工智能·深度学习·tensorflow 环境搭建·conda 创建虚拟环境·开发工具安装·jupyter相关问题解决·tensorf开发环境优化
Hcoco_me1 小时前
图像分割:目标检测、语义分割和实例分割
人工智能·深度学习·算法·目标检测·计算机视觉·目标跟踪
至此流年莫相忘1 小时前
Linux部署k8s(Ubuntu)
linux·ubuntu·kubernetes
henry1010101 小时前
Debian/Ubuntu EC2实例上一键部署WireGuard
ubuntu·云计算·debian·aws
九.九9 小时前
ops-transformer:AI 处理器上的高性能 Transformer 算子库
人工智能·深度学习·transformer
春日见9 小时前
拉取与合并:如何让个人分支既包含你昨天的修改,也包含 develop 最新更新
大数据·人工智能·深度学习·elasticsearch·搜索引擎
偷吃的耗子10 小时前
【CNN算法理解】:三、AlexNet 训练模块(附代码)
深度学习·算法·cnn