Ubuntu将深度学习环境配置移植到新电脑

这里默认新电脑已经安装好了conda、CUDA这些,可以直接创建新的虚拟环境。

参考链接:

基础知识

创建和管理Conda环境

创建新环境:conda create -n myenv python=3.8(其中myenv是环境名,python=3.8指定Python版本)

激活环境:conda activate myenv

退出环境:conda deactivate

列出所有环境:conda env listconda info --envs

删除环境:conda remove --name myenv --allconda remove -n myenv --all

列出当前环境下已安装包:pip list

使用conda

  1. 导出当前环境

    在你的旧电脑上,使用以下命令生成 environment.yaml 文件:

    复制代码
    conda env export > environment.yaml
  2. 在新电脑上创建新环境

    environment.yaml 文件复制到新电脑后,使用以下命令创建新环境:

    复制代码
    conda env create -f environment.yaml -n newenv
  3. 激活新环境

    创建完成后,激活新环境:

    复制代码
    conda activate newenv

注意事项

  • 确保 environment.yaml 文件在新电脑上可用。
  • 如果 environment.yaml 中的路径或特定平台依赖(如 Windows 和 Linux 之间的差异)导致问题,可以手动编辑 environment.yaml 文件,删除或修改不必要的部分。
  • 如果新电脑上已有相同名称的环境,确保先删除该环境,或者在 environment.yaml 中选择一个不同的名称。

使用pip(不推荐)

由于旧电脑上的包有的是通过conda安装的有的是通过pip安装的,使用上面conda导出的yaml文件能保留完整信息,如果像下面这样通过pip导出txt文件则会出现各种问题。

老电脑

  1. 激活环境:conda activate oldenv
  2. pip freeze > requirements.txt 导出 requirement.txt,直接导出在主目录下

新电脑

  1. requirement.txt 放在主目录下
  2. 创建并激活新环境
  3. 执行命令 pip install -r requirements.txt ,顺利的话即可一键安装完所需要的第三方库
  4. 但是如果原环境配置较复杂,则可能需要删除一些特定路径,可能还需要修改一些包的版本
相关推荐
企鹅侠客8 分钟前
Ubuntu本地部署AnythingLLM实现本地文档RAG
linux·运维·ubuntu·llm
森G1 小时前
六、imx6ull驱动实现
linux·c语言·ubuntu
Coding茶水间1 小时前
基于深度学习的35种鸟类检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
chao1031 小时前
ubuntu下业务运行环境搭建
linux·运维·ubuntu
ReinaXue1 小时前
跨模态预训练大模型【CLIP】:Contrastive Language–Image Pre-training
图像处理·人工智能·深度学习·计算机视觉·语言模型
【建模先锋】1 小时前
高效对抗噪声!基于深度残差收缩网络(DRSN)的轴承故障诊断模型
网络·深度学习·信号处理·轴承故障诊断·降噪模型
龙吟游戏2 小时前
Ubuntu 25.10桌面版安装
linux·运维·ubuntu
All The Way North-2 小时前
PyTorch SmoothL1Loss 全面解析:数学定义、梯度推导、API 规范与 logits 误用纠正
pytorch·深度学习·机器学习·smooth l1损失函数·回归损失函数
米优2 小时前
ubuntu设置分辨率
linux·运维·ubuntu
HIT_Weston3 小时前
51、【Ubuntu】【Gitlab】拉出内网 Web 服务:http.server 单/多线程分析(三)
ubuntu·http·gitlab