Ubuntu将深度学习环境配置移植到新电脑

这里默认新电脑已经安装好了conda、CUDA这些,可以直接创建新的虚拟环境。

参考链接:

基础知识

创建和管理Conda环境

创建新环境:conda create -n myenv python=3.8(其中myenv是环境名,python=3.8指定Python版本)

激活环境:conda activate myenv

退出环境:conda deactivate

列出所有环境:conda env listconda info --envs

删除环境:conda remove --name myenv --allconda remove -n myenv --all

列出当前环境下已安装包:pip list

使用conda

  1. 导出当前环境

    在你的旧电脑上,使用以下命令生成 environment.yaml 文件:

    复制代码
    conda env export > environment.yaml
  2. 在新电脑上创建新环境

    environment.yaml 文件复制到新电脑后,使用以下命令创建新环境:

    复制代码
    conda env create -f environment.yaml -n newenv
  3. 激活新环境

    创建完成后,激活新环境:

    复制代码
    conda activate newenv

注意事项

  • 确保 environment.yaml 文件在新电脑上可用。
  • 如果 environment.yaml 中的路径或特定平台依赖(如 Windows 和 Linux 之间的差异)导致问题,可以手动编辑 environment.yaml 文件,删除或修改不必要的部分。
  • 如果新电脑上已有相同名称的环境,确保先删除该环境,或者在 environment.yaml 中选择一个不同的名称。

使用pip(不推荐)

由于旧电脑上的包有的是通过conda安装的有的是通过pip安装的,使用上面conda导出的yaml文件能保留完整信息,如果像下面这样通过pip导出txt文件则会出现各种问题。

老电脑

  1. 激活环境:conda activate oldenv
  2. pip freeze > requirements.txt 导出 requirement.txt,直接导出在主目录下

新电脑

  1. requirement.txt 放在主目录下
  2. 创建并激活新环境
  3. 执行命令 pip install -r requirements.txt ,顺利的话即可一键安装完所需要的第三方库
  4. 但是如果原环境配置较复杂,则可能需要删除一些特定路径,可能还需要修改一些包的版本
相关推荐
深夜情感老师2 小时前
centos&ububntu设置开机自启动
ubuntu·centos
Listennnn3 小时前
神经网络能不能完全拟合y=x² ???
人工智能·深度学习·神经网络
liuliu03234 小时前
戴尔笔记本 ubuntu 22.04 开机后进入initramfs界面
linux·运维·ubuntu
WhyNot?4 小时前
深度学习入门(三):神经网络的学习
深度学习·神经网络·学习
odoo中国4 小时前
深度学习 Deep Learning 第16章 结构化概率模型
人工智能·深度学习·结构化模型
摸鱼仙人~4 小时前
为什么有的深度学习训练,有训练集、验证集、测试集3个划分,有的只是划分训练集和测试集?
人工智能·深度学习
Jamence5 小时前
多模态大语言模型arxiv论文略读(一)
人工智能·深度学习·语言模型
KangkangLoveNLP5 小时前
手动实现一个迷你Llama:使用SentencePiece实现自己的tokenizer
人工智能·深度学习·学习·算法·transformer·llama
蒋星熠7 小时前
在VMware下Hadoop分布式集群环境的配置--基于Yarn模式的一个Master节点、两个Slaver(Worker)节点的配置
大数据·linux·hadoop·分布式·ubuntu·docker
thinkMoreAndDoMore7 小时前
深度学习处理文本(5)
人工智能·python·深度学习