LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

目录

    • [LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测](#LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测)

预测效果




基本介绍

1.LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测(完整源码和数据);

2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;

3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;

4.运行环境Matlab2023b及以上;

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信博主回复LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
Stara051112 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
X Y O12 小时前
神经网络初步学习——感知机
人工智能·神经网络·学习·感知机
强化学习与机器人控制仿真13 小时前
openpi 入门教程
开发语言·人工智能·python·深度学习·神经网络·机器人·自动驾驶
风亦辰73914 小时前
神经网络是如何工作的
人工智能·深度学习·神经网络
天上路人14 小时前
采用AI神经网络降噪算法的通信语音降噪(ENC)模组性能测试和应用
人工智能·神经网络·算法
搏博14 小时前
生成对抗网络(GAN)深度解析:理论、技术与应用全景
人工智能·神经网络·生成对抗网络
12960045215 小时前
神经元和神经网络定义
人工智能·深度学习·神经网络
Francek Chen19 小时前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
妄想成为master1 天前
快速入门深度学习系列(2)----损失函数、逻辑回归、向量化
人工智能·深度学习·神经网络
yzx9910131 天前
支持向量机与逻辑回归的区别及 SVM 在图像分类中的应用
支持向量机·分类·逻辑回归