流式处理,为什么Flink比Spark Streaming好?

1 、反压机制
Flink 在数据传输过程中使用了分布式阻塞队列,一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力。
Spark Streaming 为了实现反压这个功能,在原来的架构基础上构造了一个 " 速率控制器 " ,这个 " 速率控制器" 会根据几个属性,如任务的结束时间、处理时长、处理消息的条数等计算一个速率。在实现控制数据的接收速率中用到了一个经典的算法,即"PID 算法 " 。
2 、延迟方面
Spark Streaming 是秒级别的
Structured Streaming 是毫秒级别的
Flink 是亚秒级别的
3 、状态存储方面
Spark 的状态管理目前做的比较简单 , 只有两个对应的算子( UpdateStateByKey 和 mapWithState )。
Flink 提供文件、内存、 RocksDB 三种状态存储,五种类型的状态,( ValueState , ListState ,
ReducingState , AggregatingState , FoldingState , MapState )。
4 、灵活的窗口
Spark 只能根据处理时间窗口批量处理。
Flink 可以基于处理时间,数据时间,没有记录等的窗口。
5 、实时方面
Flink 是真正的实时计算,在状态数据和 Checkpoint 容错上做的比较好,能够做到 exactly once 。

相关推荐
萤丰信息7 分钟前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地
Viking_bird1 小时前
Apache Spark 3.2.0 开发测试环境部署指南
大数据·分布式·ajax·spark·apache
用户199701080182 小时前
抖音商品列表API技术文档
大数据·数据挖掘·数据分析
数据皮皮侠5 小时前
最新上市公司业绩说明会文本数据(2017.02-2025.08)
大数据·数据库·人工智能·笔记·物联网·小程序·区块链
陆小叁5 小时前
基于Flink CDC实现联系人与标签数据实时同步至ES的实践
java·elasticsearch·flink
计算机毕设-小月哥7 小时前
完整源码+技术文档!基于Hadoop+Spark的鲍鱼生理特征大数据分析系统免费分享
大数据·hadoop·spark·numpy·pandas·计算机毕业设计
Jinkxs7 小时前
AI重塑金融风控:从传统规则到智能模型的信贷审批转型案例
大数据·人工智能
时序数据说14 小时前
时序数据库市场前景分析
大数据·数据库·物联网·开源·时序数据库
2501_9301040418 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
健康平安的活着18 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎