1 、反压机制
Flink 在数据传输过程中使用了分布式阻塞队列,一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力。
Spark Streaming 为了实现反压这个功能,在原来的架构基础上构造了一个 " 速率控制器 " ,这个 " 速率控制器" 会根据几个属性,如任务的结束时间、处理时长、处理消息的条数等计算一个速率。在实现控制数据的接收速率中用到了一个经典的算法,即"PID 算法 " 。
2 、延迟方面
Spark Streaming 是秒级别的
Structured Streaming 是毫秒级别的
Flink 是亚秒级别的
3 、状态存储方面
Spark 的状态管理目前做的比较简单 , 只有两个对应的算子( UpdateStateByKey 和 mapWithState )。
Flink 提供文件、内存、 RocksDB 三种状态存储,五种类型的状态,( ValueState , ListState ,
ReducingState , AggregatingState , FoldingState , MapState )。
4 、灵活的窗口
Spark 只能根据处理时间窗口批量处理。
Flink 可以基于处理时间,数据时间,没有记录等的窗口。
5 、实时方面
Flink 是真正的实时计算,在状态数据和 Checkpoint 容错上做的比较好,能够做到 exactly once 。
流式处理,为什么Flink比Spark Streaming好?
lucky_syq2024-12-23 22:06
相关推荐
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法啊喜拔牙5 小时前
1. hadoop 集群的常用命令别惊鹊5 小时前
MapReduce工作原理8K超高清5 小时前
中国8K摄像机:科技赋能文化传承新图景2401_871290587 小时前
MapReduce 的工作原理SelectDB技术团队7 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座你觉得2058 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法益莱储中国8 小时前
世界通信大会、嵌入式展及慕尼黑上海光博会亮点回顾Loving_enjoy9 小时前
基于Hadoop的明星社交媒体影响力数据挖掘平台:设计与实现浮尘笔记9 小时前
go-zero使用elasticsearch踩坑记:时间存储和展示问题