生物信息学导论-北大-RNA-Seq数据分析

ref: https://www.coursera.org/learn/sheng-wu-xin-xi-xue/home

本文主要来自本课的讲义+搜索内容。

已不再上课,所以本文只是笔记,恕不能提供讨论与答疑。


junction reads

对转录本进行测序后,将所得reads,map到基因组时,有些reads可能来自"跨越两个不同的基因或exon"的连接区域(可能由于基因剪接事件),导致与基因组只能部分匹配。这些reads就是junction reads。通过分析它们,可以了解基因的剪接变异和不同转录本的生成情况(detect novel splicing isoform),这对理解基因表达调控和功能注释非常重要。

处理方法

  1. join exon策略
    1. 为已知的转录本建立CJL(conceptual junctions library),存放已知的剪接异构体
    2. 将reads同时map到基因组和CJL中,如果可以无剪接地匹配到基因组,说明不是junction reads,否则去匹配CJL
    3. 优点:快速、能识别新的剪接异构体
    4. 缺点:不能发现新的外显子和新基因
  2. split reads策略
    1. 与join exon的区别在于,对于map不到基因组的reads,先按类似滑窗的方式切成若干k-mer seeds,然后拿seeds再去map基因组,最后把map上的seeds合起来
    2. 优点:能识别新的剪接异构体,能发现新的外显子和新基因
    3. 缺点:比join exon要慢

可用工具

  • TopHat

  • Cufflinks

  • Cuffmerge

  • Cuffdiff

    • 计算两个或多个样本的表达水平,并且计算每个变化的统计显著性
    • 重要参数:-u
  • CummeRbund

    • 方便分析Cufflinks结果的R包,可以绘图
    r 复制代码
    > source('http://www.bioconductor.org/biocLite.R')
    > biocLite('cummeRbund')
    • 常用命令:
    r 复制代码
    > csDensity(genes(cuff_data))
    > csScatter(genes(cuff_data), 'C1', 'C2')
    > csVolcano(genes(cuff_data), 'C1', 'C2')
    > expressionBarplot(mygene)
    > expressionBarplot(isoforms(mygene))
相关推荐
人大博士的交易之路1 小时前
今日行情明日机会——20251104
大数据·数据挖掘·数据分析·缠论·涨停回马枪·道琼斯结构
hweiyu0015 小时前
Hive 技术深度解析与 P7 数据分析架构师多行业全场景实战课程合集(视频教程)
hive·数据分析
sensen_kiss20 小时前
INT303 Big Data Analysis 大数据分析 Pt.3 数据挖掘(Data Mining)
大数据·数据挖掘·数据分析
B站计算机毕业设计之家21 小时前
Python招聘数据分析可视化系统 Boss直聘数据 selenium爬虫 Flask框架 数据清洗(附源码)✅
爬虫·python·selenium·机器学习·数据分析·flask
雪碧聊技术21 小时前
爬虫是什么?
大数据·爬虫·python·数据分析
没有梦想的咸鱼185-1037-16631 天前
【生命周期评价(LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建
开发语言·数据分析·r语言
TwoAnts&DingJoy1 天前
数据分析-数据沙箱
人工智能·python·安全·数据分析·数据沙箱
Hello.Reader1 天前
用 Spark Shell 做交互式数据分析从入门到自包含应用
大数据·数据分析·spark
Bony-1 天前
生活方式与肥胖风险:多维度数据分析与预测模型研究
数据挖掘·数据分析·生活
一晌小贪欢1 天前
【Html模板】赛博朋克风格数据分析大屏(已上线-可预览)
前端·数据分析·html·数据看板·看板·电商大屏·大屏看板