生物信息学导论-北大-RNA-Seq数据分析

ref: https://www.coursera.org/learn/sheng-wu-xin-xi-xue/home

本文主要来自本课的讲义+搜索内容。

已不再上课,所以本文只是笔记,恕不能提供讨论与答疑。


junction reads

对转录本进行测序后,将所得reads,map到基因组时,有些reads可能来自"跨越两个不同的基因或exon"的连接区域(可能由于基因剪接事件),导致与基因组只能部分匹配。这些reads就是junction reads。通过分析它们,可以了解基因的剪接变异和不同转录本的生成情况(detect novel splicing isoform),这对理解基因表达调控和功能注释非常重要。

处理方法

  1. join exon策略
    1. 为已知的转录本建立CJL(conceptual junctions library),存放已知的剪接异构体
    2. 将reads同时map到基因组和CJL中,如果可以无剪接地匹配到基因组,说明不是junction reads,否则去匹配CJL
    3. 优点:快速、能识别新的剪接异构体
    4. 缺点:不能发现新的外显子和新基因
  2. split reads策略
    1. 与join exon的区别在于,对于map不到基因组的reads,先按类似滑窗的方式切成若干k-mer seeds,然后拿seeds再去map基因组,最后把map上的seeds合起来
    2. 优点:能识别新的剪接异构体,能发现新的外显子和新基因
    3. 缺点:比join exon要慢

可用工具

  • TopHat

  • Cufflinks

  • Cuffmerge

  • Cuffdiff

    • 计算两个或多个样本的表达水平,并且计算每个变化的统计显著性
    • 重要参数:-u
  • CummeRbund

    • 方便分析Cufflinks结果的R包,可以绘图
    r 复制代码
    > source('http://www.bioconductor.org/biocLite.R')
    > biocLite('cummeRbund')
    • 常用命令:
    r 复制代码
    > csDensity(genes(cuff_data))
    > csScatter(genes(cuff_data), 'C1', 'C2')
    > csVolcano(genes(cuff_data), 'C1', 'C2')
    > expressionBarplot(mygene)
    > expressionBarplot(isoforms(mygene))
相关推荐
charlee444 小时前
PandasAI连接LLM进行智能数据分析
ai·数据分析·llm·pandasai·deepseek
Re_Yang099 小时前
数学专业转型数据分析竞争力发展报告
数据挖掘·数据分析
workflower9 小时前
数据分析前景
算法·数据挖掘·数据分析·需求分析·软件需求
我要学习别拦我~10 小时前
kaggle分析项目:steam付费游戏数据分析
python·游戏·数据分析
海哥编程11 小时前
Python 数据分析(二):Matplotlib 绘图
python·数据分析·matplotlib
Watermelo6171 天前
极致的灵活度满足工程美学:用Vue Flow绘制一个完美流程图
前端·javascript·vue.js·数据挖掘·数据分析·流程图·数据可视化
Watermelo6171 天前
Web Worker:让前端飞起来的隐形引擎
前端·javascript·vue.js·数据挖掘·数据分析·node.js·es6
SickeyLee2 天前
BI 系统数据看板全解析:让数据可视化驱动业务决策
信息可视化·数据挖掘·数据分析
万能的小裴同学2 天前
星痕共鸣数据分析2
c++·数据分析
Jacob02342 天前
很多数据分析师写对了 SQL,却忽略了这件更重要的事
后端·sql·数据分析