生物信息学导论-北大-RNA-Seq数据分析

ref: https://www.coursera.org/learn/sheng-wu-xin-xi-xue/home

本文主要来自本课的讲义+搜索内容。

已不再上课,所以本文只是笔记,恕不能提供讨论与答疑。


junction reads

对转录本进行测序后,将所得reads,map到基因组时,有些reads可能来自"跨越两个不同的基因或exon"的连接区域(可能由于基因剪接事件),导致与基因组只能部分匹配。这些reads就是junction reads。通过分析它们,可以了解基因的剪接变异和不同转录本的生成情况(detect novel splicing isoform),这对理解基因表达调控和功能注释非常重要。

处理方法

  1. join exon策略
    1. 为已知的转录本建立CJL(conceptual junctions library),存放已知的剪接异构体
    2. 将reads同时map到基因组和CJL中,如果可以无剪接地匹配到基因组,说明不是junction reads,否则去匹配CJL
    3. 优点:快速、能识别新的剪接异构体
    4. 缺点:不能发现新的外显子和新基因
  2. split reads策略
    1. 与join exon的区别在于,对于map不到基因组的reads,先按类似滑窗的方式切成若干k-mer seeds,然后拿seeds再去map基因组,最后把map上的seeds合起来
    2. 优点:能识别新的剪接异构体,能发现新的外显子和新基因
    3. 缺点:比join exon要慢

可用工具

  • TopHat

  • Cufflinks

  • Cuffmerge

  • Cuffdiff

    • 计算两个或多个样本的表达水平,并且计算每个变化的统计显著性
    • 重要参数:-u
  • CummeRbund

    • 方便分析Cufflinks结果的R包,可以绘图
    r 复制代码
    > source('http://www.bioconductor.org/biocLite.R')
    > biocLite('cummeRbund')
    • 常用命令:
    r 复制代码
    > csDensity(genes(cuff_data))
    > csScatter(genes(cuff_data), 'C1', 'C2')
    > csVolcano(genes(cuff_data), 'C1', 'C2')
    > expressionBarplot(mygene)
    > expressionBarplot(isoforms(mygene))
相关推荐
生信大杂烩8 小时前
Xenium数据分析 | 数据预处理、单细胞降维聚类、细胞类型定义
数据挖掘·数据分析·聚类
永洪科技1 天前
共绘智慧升级,看永洪科技助力由由集团起航智慧征途
大数据·数据分析·数据可视化·bi
Python数据分析与机器学习1 天前
《基于Hadoop的出租车需求预测系统设计与实现》开题报告
大数据·hadoop·分布式·python·算法·数据挖掘·数据分析
码界筑梦坊1 天前
基于大数据的全国地铁数据可视化分析系统
大数据·信息可视化·数据分析
永洪科技1 天前
IDC权威认证!永洪科技入选 IDC「GBI图谱」,点亮生成式 BI 价值灯塔
大数据·人工智能·科技·数据分析·bi
weixin_307779131 天前
Python Pandas实现导出两个Excel数据集的对应值的差异值分析
开发语言·python·数据分析·pandas
蹦蹦跳跳真可爱5891 天前
Python----数据分析(Matplotlib四:Figure的用法,创建Figure对象,常用的Figure对象的方法)
python·数据分析·matplotlib
永洪科技1 天前
永洪科技深度分析实战,零售企业的销量预测
大数据·数据分析·数据可视化·零售·bi
码界筑梦坊2 天前
基于数据挖掘的疾病数据可视化分析与预测系统
人工智能·python·信息可视化·数据挖掘·数据分析·毕业设计