ResEmoteNet论文阅读与推理

论文题目:ResEmoteNet: Bridging Accuracy and Loss Reduction in Facial Emotion Recognition

领域:面部情绪识别

数据集:​AffectNet​RAF-DBFER2013​ ExpW

模型架构:CNN+SE Block(Squeeze excitation) + Resnet+AAP

论文中的SE Block压缩激励结构如下:

ResEmoteNet的整体框架如下:

(1)CNN 模块,该模块具有三个卷积层,用于分层特征提取,然后进行批量归一化,以稳定学习并提高训练效率。在每一层之后应用 Max-pooling 以减少空间维度,降低计算成本并引入平移不变性以提高鲁棒性。

(2)SE模块,Squeeze使用全局平均池化将来自每个通道的空间数据压缩为全局描述符。 Excitation使用激活的门控机制来捕获通道依赖关系。SENet 的方法允许网络学习一系列注意力权重,突出每个输入元素对网络输出的重要性。

(3)残差Residual模块,解决神经网络中梯度消失和爆炸的常见问题。

(4)Adaptive Average Pooling(自适应平均池化) 是 CNN 中使用的一种池化层,无论原始输入维度如何,它都可以将输入信息聚合为恒定的输出大小。AAP 调整内核大小和步幅以达到特定的输出大小,而不是像传统的池化方法那样减小空间维度。它确保各种数据集和图层中的输出维度一致。

推理过程与结果:

GitHub:https://github.com/ArnabKumarRoy02/ResEmoteNet

下载预训练模型:ResEmoteNet Checkpoints - Google 云端硬盘

打开文件./eval_image.py,第16行代码:

python 复制代码
checkpoint = torch.load('path/to/fer2013_model.pth', weights_only=True,
                        map_location=torch.device('cpu'))

第80行代码:

python 复制代码
# Load the image file
image = cv2.imread('path/to/test1_image.jpg')

保存并运行该文件:

python 复制代码
python eval_image.py

测试图像是这个:

测试结果如下:

相关推荐
番茄大王sc20 小时前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
码界奇点1 天前
基于Gin与GORM的若依后台管理系统设计与实现
论文阅读·go·毕业设计·gin·源代码管理
森诺Alyson1 天前
前沿技术借鉴研讨-2026.1.29(时间序列预测)
论文阅读·人工智能·经验分享·深度学习·论文笔记
有Li2 天前
多视图深度学习乳腺X线摄影分类技术:图和Transformer架构的探究/文献速递-基于人工智能的医学影像技术
论文阅读·深度学习·文献·医学生
数说星榆1812 天前
前后端分离开发流程-泳道图设计与应用
论文阅读·职场和发展·毕业设计·流程图·职场发展·论文笔记·毕设
数说星榆1812 天前
项目管理流程图-泳道图模板免费下载
论文阅读·毕业设计·流程图·论文笔记·毕设
程途拾光1582 天前
产品功能验收泳道图-流程图模板下载
论文阅读·职场和发展·毕业设计·流程图·课程设计·论文笔记·毕设
檐下翻书1732 天前
招聘SOP流程图-泳道图模板详细教程
论文阅读·毕业设计·流程图·图论·论文笔记·毕设
m0_650108243 天前
UniScene:面向自动驾驶的统一占用率中心驾驶场景生成
论文阅读·自动驾驶·uniscene·训练数据生成·语义占用率生成·多视角视频生成·激光雷达点云生成
蓝田生玉1233 天前
Deepstack论文阅读笔记
论文阅读·笔记