ResEmoteNet论文阅读与推理

论文题目:ResEmoteNet: Bridging Accuracy and Loss Reduction in Facial Emotion Recognition

领域:面部情绪识别

数据集:​AffectNet​RAF-DBFER2013​ ExpW

模型架构:CNN+SE Block(Squeeze excitation) + Resnet+AAP

论文中的SE Block压缩激励结构如下:

ResEmoteNet的整体框架如下:

(1)CNN 模块,该模块具有三个卷积层,用于分层特征提取,然后进行批量归一化,以稳定学习并提高训练效率。在每一层之后应用 Max-pooling 以减少空间维度,降低计算成本并引入平移不变性以提高鲁棒性。

(2)SE模块,Squeeze使用全局平均池化将来自每个通道的空间数据压缩为全局描述符。 Excitation使用激活的门控机制来捕获通道依赖关系。SENet 的方法允许网络学习一系列注意力权重,突出每个输入元素对网络输出的重要性。

(3)残差Residual模块,解决神经网络中梯度消失和爆炸的常见问题。

(4)Adaptive Average Pooling(自适应平均池化) 是 CNN 中使用的一种池化层,无论原始输入维度如何,它都可以将输入信息聚合为恒定的输出大小。AAP 调整内核大小和步幅以达到特定的输出大小,而不是像传统的池化方法那样减小空间维度。它确保各种数据集和图层中的输出维度一致。

推理过程与结果:

GitHub:https://github.com/ArnabKumarRoy02/ResEmoteNet

下载预训练模型:ResEmoteNet Checkpoints - Google 云端硬盘

打开文件./eval_image.py,第16行代码:

python 复制代码
checkpoint = torch.load('path/to/fer2013_model.pth', weights_only=True,
                        map_location=torch.device('cpu'))

第80行代码:

python 复制代码
# Load the image file
image = cv2.imread('path/to/test1_image.jpg')

保存并运行该文件:

python 复制代码
python eval_image.py

测试图像是这个:

测试结果如下:

相关推荐
Eastmount2 小时前
[论文阅读] (47)LAMD: 基于大模型上下文驱动的Android恶意软件检测与分类
android·论文阅读·大模型·系统安全·恶意代码检测
蓝海星梦2 小时前
【论文笔记】DeepSeekMath-V2: 基于自我验证的数学推理新范式
论文阅读·人工智能·自然语言处理·数学推理·deepseek
EEPI1 天前
【论文阅读】Vision Language Models are In-Context Value Learners
论文阅读·人工智能·语言模型
墨绿色的摆渡人1 天前
论文笔记(一百一十六)ViTa-Zero: Zero-shot Visuotactile Object 6D Pose Estimation
论文阅读
醒了就刷牙1 天前
Vilt论文相关工作部分
论文阅读·论文笔记
m0_743106461 天前
【Feedforward 3dgs】YOU ONLY NEED ONE MODEL
论文阅读·人工智能·计算机视觉·3d·几何学
有Li1 天前
基于小波分析和记忆库的超声长视频时空细节追踪-文献速递-医疗影像分割与目标检测最新技术
论文阅读·文献·医学生
万里鹏程转瞬至2 天前
论文简读:Kwai Keye-VL Technical Report
论文阅读·多模态
川西胖墩墩2 天前
中文PC端跨职能流程图模板免费下载
大数据·论文阅读·人工智能·架构·流程图
静听松涛1332 天前
在线协作跨职能泳道图制作工具 PC版
大数据·论文阅读·人工智能·信息可视化·架构