ResEmoteNet论文阅读与推理

论文题目:ResEmoteNet: Bridging Accuracy and Loss Reduction in Facial Emotion Recognition

领域:面部情绪识别

数据集:​AffectNet​RAF-DBFER2013​ ExpW

模型架构:CNN+SE Block(Squeeze excitation) + Resnet+AAP

论文中的SE Block压缩激励结构如下:

ResEmoteNet的整体框架如下:

(1)CNN 模块,该模块具有三个卷积层,用于分层特征提取,然后进行批量归一化,以稳定学习并提高训练效率。在每一层之后应用 Max-pooling 以减少空间维度,降低计算成本并引入平移不变性以提高鲁棒性。

(2)SE模块,Squeeze使用全局平均池化将来自每个通道的空间数据压缩为全局描述符。 Excitation使用激活的门控机制来捕获通道依赖关系。SENet 的方法允许网络学习一系列注意力权重,突出每个输入元素对网络输出的重要性。

(3)残差Residual模块,解决神经网络中梯度消失和爆炸的常见问题。

(4)Adaptive Average Pooling(自适应平均池化) 是 CNN 中使用的一种池化层,无论原始输入维度如何,它都可以将输入信息聚合为恒定的输出大小。AAP 调整内核大小和步幅以达到特定的输出大小,而不是像传统的池化方法那样减小空间维度。它确保各种数据集和图层中的输出维度一致。

推理过程与结果:

GitHub:https://github.com/ArnabKumarRoy02/ResEmoteNet

下载预训练模型:ResEmoteNet Checkpoints - Google 云端硬盘

打开文件./eval_image.py,第16行代码:

python 复制代码
checkpoint = torch.load('path/to/fer2013_model.pth', weights_only=True,
                        map_location=torch.device('cpu'))

第80行代码:

python 复制代码
# Load the image file
image = cv2.imread('path/to/test1_image.jpg')

保存并运行该文件:

python 复制代码
python eval_image.py

测试图像是这个:

测试结果如下:

相关推荐
张较瘦_3 小时前
[论文阅读] AI + 软件工程 | GenAI 赋能自适应系统:从技术突破到研究蓝图,一文看懂核心价值与挑战
论文阅读·人工智能·软件工程
张较瘦_4 小时前
[论文阅读] 软件工程 - 供应链 | 从Log4Shell到Go组件漏洞:一篇文看懂开源依赖安全的核心痛点与解决方案
论文阅读·golang·开源
有Li8 小时前
一种交互式可解释人工智能方法,用于改进数字细胞病理学癌症亚型分类中的人机协作|文献速递-文献分享
大数据·论文阅读·人工智能·文献
iiiiii118 小时前
【论文阅读笔记】FOCAL 离线元强化学习,从静态数据中快速适应新任务
论文阅读·人工智能·笔记·学习·机器学习·学习方法·具身智能
川川子溢9 小时前
【论文阅读】SegEarth-OV:面向遥感图像的免训练开放词汇分割
论文阅读
m0_6501082411 小时前
BEVFormer:基于时空 Transformer 的多相机鸟瞰图表征学习
论文阅读·自动驾驶·相机-based 3d感知·bev表征·时空信息融合·端到端感知·bevformer
sca1p311 天前
新南威尔士大学 LiM
论文阅读·人工智能·加密流量分类
m0_650108241 天前
Lift, Splat, Shoot:自动驾驶多视图相机的 BEV 语义表示学习
论文阅读·自动驾驶·数据驱动·lss·纯视觉bev感知·bev 语义分割·可解释的端到端轨迹规划
m0_650108241 天前
Sparse4D v3:端到端 3D 检测与跟踪的技术突破
论文阅读·自动驾驶·sparse4d v3·端到端3d感知框架·去噪思想·端到端跟踪·纯视觉感知
m0_650108242 天前
VADv2:基于概率规划的端到端矢量化自动驾驶
论文阅读·自动驾驶·端到端矢量化·驾驶场景中的不确定性·概率场建模·多模态编码·vadv2