SDMTSP:粒子群优化算法PSO求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

一、单仓库多旅行商问题

单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP):𝑚个推销员从同一座中心城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后返回到中心城市,通常这种问题模型被称之为SD-MTSP。

多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)_IT猿手的博客-CSDN博客

二、粒子群优化算法PSO求解SDMTSP

粒子群优化算法(Particle Swarm Optimization,PSO)是一种模拟自然界群体行为的优化算法,由Eberhart和Kennedy于1995年提出。它的核心思想是模拟鸟群觅食行为,通过群体协作寻找问题的全局最优解。

基本原理:

PSO算法中,每个解被看作是在搜索空间中的一个粒子,每个粒子代表了问题的潜在解,并具有位置和速度两个属性。粒子在搜索空间中飞行,通过跟踪两个"极值"来寻找最优解:个体历史最优位置(pbest)和群体历史最优位置(gbest)。个体历史最优位置是粒子自身所找到的最优解,而群体历史最优位置是整个粒子群中所有粒子所找到的最优解。

算法流程:

  1. 初始化:随机初始化一群粒子的位置和速度,并将个体的历史最优位置设为当前位置,群体的最优位置也设为某个粒子的位置。
  2. 适应度评价:计算每个粒子的适应度值,即目标函数值。
  3. 更新个体和群体最优:如果当前粒子的适应度优于其历史最优,则更新个体最优;如果优于群体最优,则更新群体最优。
  4. 更新速度和位置:根据个体最优和群体最优,以及一些权重和随机因素,更新粒子的速度和位置。
  5. 迭代:重复步骤2-4,直到满足结束条件,如达到最大迭代次数或目标函数值满足要求。
2.1部分代码(可更改起点及旅行商个数)
复制代码
%% 标记城市序号
for i=1:size(data,1)
    text(data(i,1)+15,data(i,2),strcat(' ',num2str(i)),'color','k','FontSize',10);
end
pt=scatter(data(Kd(1,1),1),data(Kd(1,1),2),150,'kp','filled');
set(get(get(pt, 'Annotation'), 'LegendInformation'), 'IconDisplayStyle', 'off');
%% %%%%%%%%%%%%%%%%%%% 画算法收敛曲线图 %%%%%%%%%%%%%%%%%%%%%
figure
plot(curve,'linewidth',2)
xlabel('迭代次数')
ylabel('所有旅行商的总距离')
legend('PSO')

相关推荐
金井PRATHAMA9 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh9 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
gopyer9 小时前
180课时吃透Go语言游戏后端开发6:Go语言的循环语句
开发语言·游戏·golang·循环语句
CiLerLinux10 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星202312 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
楼田莉子12 小时前
Qt开发学习——QtCreator深度介绍/程序运行/开发规范/对象树
开发语言·前端·c++·qt·学习
Learn Beyond Limits12 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
ACERT33313 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
韩立学长13 小时前
【开题答辩实录分享】以《基于python的奶茶店分布数据分析与可视化》为例进行答辩实录分享
开发语言·python·数据分析
天若有情67313 小时前
C++空值初始化利器:empty.h使用指南
开发语言·c++