SDMTSP:粒子群优化算法PSO求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

一、单仓库多旅行商问题

单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP):𝑚个推销员从同一座中心城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后返回到中心城市,通常这种问题模型被称之为SD-MTSP。

多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)_IT猿手的博客-CSDN博客

二、粒子群优化算法PSO求解SDMTSP

粒子群优化算法(Particle Swarm Optimization,PSO)是一种模拟自然界群体行为的优化算法,由Eberhart和Kennedy于1995年提出。它的核心思想是模拟鸟群觅食行为,通过群体协作寻找问题的全局最优解。

基本原理:

PSO算法中,每个解被看作是在搜索空间中的一个粒子,每个粒子代表了问题的潜在解,并具有位置和速度两个属性。粒子在搜索空间中飞行,通过跟踪两个"极值"来寻找最优解:个体历史最优位置(pbest)和群体历史最优位置(gbest)。个体历史最优位置是粒子自身所找到的最优解,而群体历史最优位置是整个粒子群中所有粒子所找到的最优解。

算法流程:

  1. 初始化:随机初始化一群粒子的位置和速度,并将个体的历史最优位置设为当前位置,群体的最优位置也设为某个粒子的位置。
  2. 适应度评价:计算每个粒子的适应度值,即目标函数值。
  3. 更新个体和群体最优:如果当前粒子的适应度优于其历史最优,则更新个体最优;如果优于群体最优,则更新群体最优。
  4. 更新速度和位置:根据个体最优和群体最优,以及一些权重和随机因素,更新粒子的速度和位置。
  5. 迭代:重复步骤2-4,直到满足结束条件,如达到最大迭代次数或目标函数值满足要求。
2.1部分代码(可更改起点及旅行商个数)
复制代码
%% 标记城市序号
for i=1:size(data,1)
    text(data(i,1)+15,data(i,2),strcat(' ',num2str(i)),'color','k','FontSize',10);
end
pt=scatter(data(Kd(1,1),1),data(Kd(1,1),2),150,'kp','filled');
set(get(get(pt, 'Annotation'), 'LegendInformation'), 'IconDisplayStyle', 'off');
%% %%%%%%%%%%%%%%%%%%% 画算法收敛曲线图 %%%%%%%%%%%%%%%%%%%%%
figure
plot(curve,'linewidth',2)
xlabel('迭代次数')
ylabel('所有旅行商的总距离')
legend('PSO')

相关推荐
瀚岳-诸葛弩20 小时前
对比tensorflow,从0开始学pytorch(二)--多尺度实现
人工智能·pytorch·tensorflow
AAIshangyanxiu20 小时前
基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
开发语言·机器学习·r语言·生态遥感·空间预测
OpenBayes20 小时前
VibeVoice-Realtime TTS重构实时语音体验;覆盖9大真实场景,WenetSpeech-Chuan让模型听懂川话
人工智能·深度学习·数据集·图像识别·语音合成·图像生成·视频生成
光羽隹衡20 小时前
机器学习——线性回归
人工智能·机器学习·线性回归
zhongerzixunshi20 小时前
创新型中小企业申报条件详解
人工智能
Dev7z20 小时前
基于颜色特征与模板匹配融合决策的智能硬币识别系统
人工智能
LinHenrY122720 小时前
初识C语言(数据在内存中的存储)
c语言·开发语言·算法
by__csdn20 小时前
javascript 性能优化实战:异步和延迟加载
开发语言·前端·javascript·vue.js·性能优化·typescript·ecmascript
青铜弟弟20 小时前
R语言与python升级包的问题
开发语言·python·r语言