SDMTSP:粒子群优化算法PSO求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)

一、单仓库多旅行商问题

单仓库多旅行商问题(Single-Depot Multiple Travelling Salesman Problem, SD-MTSP):𝑚个推销员从同一座中心城市出发,访问其中一定数量的城市并且每座城市只能被某一个推销员访问一次,最后返回到中心城市,通常这种问题模型被称之为SD-MTSP。

多旅行商问题(Multiple Traveling Salesman Problem, MTSP):单仓库多旅行商问题及多仓库多旅行商问题(含动态视频)_IT猿手的博客-CSDN博客

二、粒子群优化算法PSO求解SDMTSP

粒子群优化算法(Particle Swarm Optimization,PSO)是一种模拟自然界群体行为的优化算法,由Eberhart和Kennedy于1995年提出。它的核心思想是模拟鸟群觅食行为,通过群体协作寻找问题的全局最优解。

基本原理:

PSO算法中,每个解被看作是在搜索空间中的一个粒子,每个粒子代表了问题的潜在解,并具有位置和速度两个属性。粒子在搜索空间中飞行,通过跟踪两个"极值"来寻找最优解:个体历史最优位置(pbest)和群体历史最优位置(gbest)。个体历史最优位置是粒子自身所找到的最优解,而群体历史最优位置是整个粒子群中所有粒子所找到的最优解。

算法流程:

  1. 初始化:随机初始化一群粒子的位置和速度,并将个体的历史最优位置设为当前位置,群体的最优位置也设为某个粒子的位置。
  2. 适应度评价:计算每个粒子的适应度值,即目标函数值。
  3. 更新个体和群体最优:如果当前粒子的适应度优于其历史最优,则更新个体最优;如果优于群体最优,则更新群体最优。
  4. 更新速度和位置:根据个体最优和群体最优,以及一些权重和随机因素,更新粒子的速度和位置。
  5. 迭代:重复步骤2-4,直到满足结束条件,如达到最大迭代次数或目标函数值满足要求。
2.1部分代码(可更改起点及旅行商个数)
复制代码
%% 标记城市序号
for i=1:size(data,1)
    text(data(i,1)+15,data(i,2),strcat(' ',num2str(i)),'color','k','FontSize',10);
end
pt=scatter(data(Kd(1,1),1),data(Kd(1,1),2),150,'kp','filled');
set(get(get(pt, 'Annotation'), 'LegendInformation'), 'IconDisplayStyle', 'off');
%% %%%%%%%%%%%%%%%%%%% 画算法收敛曲线图 %%%%%%%%%%%%%%%%%%%%%
figure
plot(curve,'linewidth',2)
xlabel('迭代次数')
ylabel('所有旅行商的总距离')
legend('PSO')

相关推荐
阳光_你好8 分钟前
详细说明Qt 中共享内存方法: QSharedMemory 对象
开发语言·数据库·qt
V_HY1476212 分钟前
AI碰一碰发视频获客工具,系统开发逻辑详细解析
大数据·人工智能·新媒体运营·流量运营
鹿屿二向箔24 分钟前
阀门流量控制系统MATLAB仿真PID
开发语言·matlab
鸿蒙布道师25 分钟前
OpenAI战略转向:开源推理模型背后的行业博弈与技术趋势
人工智能·深度学习·神经网络·opencv·自然语言处理·openai·deepseek
jiet_h25 分钟前
深入解析Kapt —— Kotlin Annotation Processing Tool 技术博客
android·开发语言·kotlin
没有黑科技26 分钟前
0.雷达信号
matlab
白雪讲堂33 分钟前
AISEO (GEO )中的知识图谱
人工智能·chatgpt·知识图谱
anda010934 分钟前
11-leveldb compact原理和性能优化
java·开发语言·性能优化
tRNA做科研36 分钟前
通过Bioconductor/BiocManager安装生物r包详解(问题汇总)
开发语言·r语言·生物信息学·bioconductor·biocmanager
Tiger Z37 分钟前
R 语言科研绘图 --- 韦恩图-汇总
开发语言·程序人生·r语言·贴图