爬虫学习案例8

爬取京东评论信息

采用DrissionPage自动化工具采集,感觉比Selenium工具好,真香。

安装第三方库

powershell 复制代码
pip install DrissionPage
pip install pandas
pip install pyecharts
pip install jieba
pip install wordcloud

1.安装DrissionPage库

DrissionPage安装博客

2.爬取评论信息到csv文件

powershell 复制代码
from  DrissionPage import ChromiumPage
import csv
# 打开浏览器
dp = ChromiumPage()
# 监听数据包
dp.listen.start('https://api.m.jd.com/?appid=item-v3&functionId=pc_club_productPageComments&client=pc')
dp.get("https://item.jd.com/100058720776.html#comment")

f = open('jd_comments.csv', 'w', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f,['昵称','地区','产品','评论时间','评论内容'])
csv_writer.writeheader()
# 循环采集前20页评论数据
for page in range(1,21):
    print(f"正在采集第{page}页评论数据")
    dp.scroll.to_bottom()
    resp = dp.listen.wait()
    json_data = resp.response.body
    print(json_data)
    print("-------------------------")
    commets = json_data['comments']
    for comment_obj in commets:
        dit = {
            '昵称': comment_obj['nickname'],
            '地区': comment_obj['location'],
            '产品': comment_obj['productColor'],
            '评论时间': comment_obj['creationTime'],
            '评论内容': comment_obj['content'],
        }
        print(dit)
        csv_writer.writerow(dit)
    # 点击下一页按钮
    dp.ele('css:.ui-pager-next').click()

如需获取其他商品评论,修改监听数据包,dp.listen.start,dp.get

dp.listen.start自己搜索,抓包请求

dp.get点击下一页,复制浏览器url即可

3.制作词云图

效果png图片:

新建一个py文件

python 复制代码
# 词云图
import jieba
import wordcloud
import pandas as pd
df = pd.read_csv('jd_comments.csv')
content = ''.join([i for i in df['评论内容']])
# print(content)
# 结巴分词处理
string = ''.join(jieba.lcut(content))
# 词云图配置
wc = wordcloud.WordCloud(
    background_color='white',
    width=1000,
    height=700,
    font_path='msyhbd.ttc',
    stopwords={'了','啊','的','都'}
)
# 导入词汇
wc.generate(string)
# 写出图片
wc.to_file('jd_wordcloud.png')

4.制作饼状图可视化

饼状图官网例子

新建一个py文件

python 复制代码
# 饼状图可视化
from pyecharts import options as opts
from pyecharts.charts import Pie
import  pandas as pd
df = pd.read_csv('jd_comments.csv')
x = df['地区'].value_counts().index.to_list()
y = df['地区'].value_counts().to_list()
print(x)
print(y)
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(
                x,
                y,
            )
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="京东-黑丝区域购买饼状图"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_scroll_legend.html")
)

x = df['产品'].value_counts().index.to_list()
y = df['产品'].value_counts().to_list()
print(x)
print(y)
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(
                x,
                y,
            )
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="京东-黑丝产品受欢迎饼状图"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("京东-黑丝产品受欢迎饼状图.html")
)

分析后饼状图效果:性感黑丝最受欢迎,嘿嘿。

参考资料:
bilibili

相关推荐
沐泽Mu13 分钟前
嵌入式学习-QT-Day07
c++·qt·学习·命令模式
沐泽Mu14 分钟前
嵌入式学习-QT-Day09
开发语言·qt·学习
炸毛的飞鼠19 分钟前
汇编语言学习
笔记·学习
egekm_sefg1 小时前
webrtc学习----前端推流拉流,局域网socket版,一对多
前端·学习·webrtc
帅逼码农1 小时前
python爬虫代码
开发语言·爬虫·python·安全架构
m0_748241701 小时前
前端学习:从零开始做一个前端开源项目
前端·学习·开源
啊哈哈哈哈哈啊哈哈3 小时前
P7——pytorch马铃薯病害识别
人工智能·深度学习·学习
sensen_kiss3 小时前
CAN201 Introduction to Networking(计算机网络)Pt.2 传输层
网络·学习·计算机网络
橘子遇见BUG3 小时前
Unity Shader学习日记 part 3 线性代数--矩阵变换
学习·线性代数·unity·矩阵·图形渲染
m0_693809384 小时前
Python——day09
python·学习