爬虫学习案例8

爬取京东评论信息

采用DrissionPage自动化工具采集,感觉比Selenium工具好,真香。

安装第三方库

powershell 复制代码
pip install DrissionPage
pip install pandas
pip install pyecharts
pip install jieba
pip install wordcloud

1.安装DrissionPage库

DrissionPage安装博客

2.爬取评论信息到csv文件

powershell 复制代码
from  DrissionPage import ChromiumPage
import csv
# 打开浏览器
dp = ChromiumPage()
# 监听数据包
dp.listen.start('https://api.m.jd.com/?appid=item-v3&functionId=pc_club_productPageComments&client=pc')
dp.get("https://item.jd.com/100058720776.html#comment")

f = open('jd_comments.csv', 'w', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f,['昵称','地区','产品','评论时间','评论内容'])
csv_writer.writeheader()
# 循环采集前20页评论数据
for page in range(1,21):
    print(f"正在采集第{page}页评论数据")
    dp.scroll.to_bottom()
    resp = dp.listen.wait()
    json_data = resp.response.body
    print(json_data)
    print("-------------------------")
    commets = json_data['comments']
    for comment_obj in commets:
        dit = {
            '昵称': comment_obj['nickname'],
            '地区': comment_obj['location'],
            '产品': comment_obj['productColor'],
            '评论时间': comment_obj['creationTime'],
            '评论内容': comment_obj['content'],
        }
        print(dit)
        csv_writer.writerow(dit)
    # 点击下一页按钮
    dp.ele('css:.ui-pager-next').click()

如需获取其他商品评论,修改监听数据包,dp.listen.start,dp.get

dp.listen.start自己搜索,抓包请求

dp.get点击下一页,复制浏览器url即可

3.制作词云图

效果png图片:

新建一个py文件

python 复制代码
# 词云图
import jieba
import wordcloud
import pandas as pd
df = pd.read_csv('jd_comments.csv')
content = ''.join([i for i in df['评论内容']])
# print(content)
# 结巴分词处理
string = ''.join(jieba.lcut(content))
# 词云图配置
wc = wordcloud.WordCloud(
    background_color='white',
    width=1000,
    height=700,
    font_path='msyhbd.ttc',
    stopwords={'了','啊','的','都'}
)
# 导入词汇
wc.generate(string)
# 写出图片
wc.to_file('jd_wordcloud.png')

4.制作饼状图可视化

饼状图官网例子

新建一个py文件

python 复制代码
# 饼状图可视化
from pyecharts import options as opts
from pyecharts.charts import Pie
import  pandas as pd
df = pd.read_csv('jd_comments.csv')
x = df['地区'].value_counts().index.to_list()
y = df['地区'].value_counts().to_list()
print(x)
print(y)
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(
                x,
                y,
            )
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="京东-黑丝区域购买饼状图"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("pie_scroll_legend.html")
)

x = df['产品'].value_counts().index.to_list()
y = df['产品'].value_counts().to_list()
print(x)
print(y)
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(
                x,
                y,
            )
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="京东-黑丝产品受欢迎饼状图"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("京东-黑丝产品受欢迎饼状图.html")
)

分析后饼状图效果:性感黑丝最受欢迎,嘿嘿。

参考资料:
bilibili

相关推荐
华科云商xiao徐1 小时前
Java多线程爬虫动态线程管理实现
java·爬虫·数据挖掘
华科云商xiao徐1 小时前
高性能小型爬虫语言与代码示例
前端·爬虫
艾莉丝努力练剑1 小时前
【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(三)
c语言·开发语言·数据结构·学习·算法
ZZZS05161 小时前
stack栈练习
c++·笔记·学习·算法·动态规划
位东风2 小时前
【c++学习记录】状态模式,实现一个登陆功能
c++·学习·状态模式
Star Curry2 小时前
【新手小白的嵌入式学习之路】-STM32的学习_GPIO 8种模式学习心得
stm32·嵌入式硬件·学习
AI视觉网奇3 小时前
rag学习笔记
笔记·学习
Feliz Da Vida4 小时前
[代码学习] c++ 通过H矩阵快速生成图像对应的mask
c++·学习
wuxuanok5 小时前
Web后端开发-Mybatis
java·开发语言·笔记·学习·mybatis
一切顺势而行6 小时前
vue总结2
学习