PyCharm专项训练5 最短路径算法

一、实验目的

本文的实验目的是通过编程实践,掌握并应用Dijkstra(迪杰斯特拉)算法和Floyd(弗洛伊德)算法来解决图论中的最短路径问题。

二、实验内容

  1. 数据准备
    • 使用邻接表的形式定义两个图graph_dijkstragraph_floyd,图中包含节点以及节点之间的边和对应的权重。
  2. 算法实现
    • 实现Dijkstra算法,从指定的源节点(节点0)出发,计算并输出到图中其他所有节点的最短距离及路径。
    • 实现Floyd算法,计算并输出图中任意两点之间的最短距离及路径。
  3. 结果输出
    • 对于Dijkstra算法,输出从源节点(节点0)到指定目标节点(如节点4)的最短距离和路径。
    • 对于Floyd算法,输出图中任意两点(如节点0到节点4)之间的最短距离和路径,以验证算法的正确性和有效性。

三、实验演示

1.Dijkstra算法&实验结果截图:

python 复制代码
#Dijkstra:

import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}
    distances[start] = 0
    priority_queue = [(0, start)]
    previous_nodes = {node: None for node in graph}

    while priority_queue:
        current_distance, current_node = heapq.heappop(priority_queue)

        if current_distance > distances[current_node]:
            continue

        for neighbor, weight in graph[current_node]:
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                previous_nodes[neighbor] = current_node
                heapq.heappush(priority_queue, (distance, neighbor))

    return distances, previous_nodes

def get_path(previous_nodes, start, end):
    path = []
    while end is not None:
        path.append(end)
        end = previous_nodes[end]
    path.reverse()
    return path if path and path[0] == start else []

# 图的表示(邻接表)
graph_dijkstra = {
    0: [(1,4), (7, 8)],
    1: [(0, 4), (7, 11), (2, 8)],
    2: [(1, 8), (8, 2), (3, 7),(5,4)],
    3: [(2,7 ), (5, 14), (4, 9)],
    4: [(3, 9),(5,10)],
    5: [(2,4),(3,14),(4,10),(6,2)],
    6: [(5,2),(7,1),(8,6)],
    7: [(0,8),(1,4),(6,1),(8,7)],
    8: [(2,2),(6,6),(7,7)]
}

start_node = 0
end_node = 4
distances, previous_nodes = dijkstra(graph_dijkstra, start_node)

print(f"从节点 {start_node} 到节点 {end_node} 的最短距离: {distances[end_node]}")
path = get_path(previous_nodes, start_node, end_node)
print(f"从节点 {start_node} 到节点 {end_node} 的最短路径: {path}")

2.Floyd算法&实验结果截图:

python 复制代码
#Floyd
import heapq  
def floyd_warshall(graph):  
    num_nodes = len(graph)  
    distances = [[float('inf')] * num_nodes for _ in range(num_nodes)]  
    previous_nodes = [[-1] * num_nodes for _ in range(num_nodes)]  

    for u in graph:  
        for v, weight in graph[u]:  
            distances[u][v] = weight  
            previous_nodes[u][v] = u  
            distances[v][u] = weight  # 对于无向图  
            previous_nodes[v][u] = v  

    for i in range(num_nodes):  
        distances[i][i] = 0  

    for k in range(num_nodes):  
        for i in range(num_nodes):  
            for j in range(num_nodes):  
                if distances[i][j] > distances[i][k] + distances[k][j]:  
                    distances[i][j] = distances[i][k] + distances[k][j]  
                    previous_nodes[i][j] = previous_nodes[k][j]  

    return distances, previous_nodes  

def reconstruct_path(previous_nodes, start, end):  
    path = []  
    while end != -1:  
        path.append(end)  
        end = previous_nodes[start][end]  
    path.reverse()  
    return path if path and path[0] == start else []   

# 图的表示(邻接表)  
graph_floyd = {  
    0: [(1,4), (7, 8)],  
    1: [(0, 4), (7, 11), (2, 8)],  
    2: [(1, 8), (8, 2), (3, 7),(5,4)],  
    3: [(2,7 ), (5, 14), (4, 9)],  
    4: [(3, 9),(5,10)],
    5: [(2,4),(3,14),(4,10),(6,2)],
    6: [(5,2),(7,1),(8,6)],
    7: [(0,8),(1,4),(6,1),(8,7)],
    8: [(2,2),(6,6),(7,7)]
}  

distances_floyd, previous_nodes_floyd = floyd_warshall(graph_floyd)  
start_node = 0  
end_node = 4  

print(f"\n从节点 {start_node} 到节点 {end_node} 的最短距离: {distances_floyd[start_node][end_node]}")  
path = reconstruct_path(previous_nodes_floyd, start_node, end_node)  
print(f"从节点 {start_node} 到节点 {end_node} 的最短路径: {path}") 
相关推荐
moonsims6 分钟前
Z3 Technology-适用于无人机和机器人的 4K 高清摄像机和视频编码器
算法
摘星编程14 分钟前
深入浅出 Tokio 源码:掌握 Rust 异步编程的底层逻辑
网络·算法·rust·系统编程·tokio
Python×CATIA工业智造21 分钟前
Pycatia二次开发基础代码解析:组件识别、选择反转与链接创建技术解析
python·pycharm
小宁爱Python39 分钟前
从零搭建 RAG 智能问答系统 6:Text2SQL 与工作流实现数据库查询
数据库·人工智能·python·django
Hard_Liquor40 分钟前
Datawhale秋训营-“大运河杯”数据开发应用创新大赛
人工智能·深度学习·算法
liu****42 分钟前
笔试强训(八)
开发语言·算法·1024程序员节
草莓工作室1 小时前
数据结构14:查找
数据结构·算法
m0_748241231 小时前
Java注解与反射实现日志与校验
java·开发语言·python
可触的未来,发芽的智生1 小时前
追根索源:换不同的词嵌入(词向量生成方式不同,但词与词关系接近),会出现什么结果?
javascript·人工智能·python·神经网络·自然语言处理
hu_nil2 小时前
LLMOps-第十一周作业
python·vllm