PyCharm专项训练5 最短路径算法

一、实验目的

本文的实验目的是通过编程实践,掌握并应用Dijkstra(迪杰斯特拉)算法和Floyd(弗洛伊德)算法来解决图论中的最短路径问题。

二、实验内容

  1. 数据准备
    • 使用邻接表的形式定义两个图graph_dijkstragraph_floyd,图中包含节点以及节点之间的边和对应的权重。
  2. 算法实现
    • 实现Dijkstra算法,从指定的源节点(节点0)出发,计算并输出到图中其他所有节点的最短距离及路径。
    • 实现Floyd算法,计算并输出图中任意两点之间的最短距离及路径。
  3. 结果输出
    • 对于Dijkstra算法,输出从源节点(节点0)到指定目标节点(如节点4)的最短距离和路径。
    • 对于Floyd算法,输出图中任意两点(如节点0到节点4)之间的最短距离和路径,以验证算法的正确性和有效性。

三、实验演示

1.Dijkstra算法&实验结果截图:

python 复制代码
#Dijkstra:

import heapq

def dijkstra(graph, start):
    distances = {node: float('infinity') for node in graph}
    distances[start] = 0
    priority_queue = [(0, start)]
    previous_nodes = {node: None for node in graph}

    while priority_queue:
        current_distance, current_node = heapq.heappop(priority_queue)

        if current_distance > distances[current_node]:
            continue

        for neighbor, weight in graph[current_node]:
            distance = current_distance + weight
            if distance < distances[neighbor]:
                distances[neighbor] = distance
                previous_nodes[neighbor] = current_node
                heapq.heappush(priority_queue, (distance, neighbor))

    return distances, previous_nodes

def get_path(previous_nodes, start, end):
    path = []
    while end is not None:
        path.append(end)
        end = previous_nodes[end]
    path.reverse()
    return path if path and path[0] == start else []

# 图的表示(邻接表)
graph_dijkstra = {
    0: [(1,4), (7, 8)],
    1: [(0, 4), (7, 11), (2, 8)],
    2: [(1, 8), (8, 2), (3, 7),(5,4)],
    3: [(2,7 ), (5, 14), (4, 9)],
    4: [(3, 9),(5,10)],
    5: [(2,4),(3,14),(4,10),(6,2)],
    6: [(5,2),(7,1),(8,6)],
    7: [(0,8),(1,4),(6,1),(8,7)],
    8: [(2,2),(6,6),(7,7)]
}

start_node = 0
end_node = 4
distances, previous_nodes = dijkstra(graph_dijkstra, start_node)

print(f"从节点 {start_node} 到节点 {end_node} 的最短距离: {distances[end_node]}")
path = get_path(previous_nodes, start_node, end_node)
print(f"从节点 {start_node} 到节点 {end_node} 的最短路径: {path}")

2.Floyd算法&实验结果截图:

python 复制代码
#Floyd
import heapq  
def floyd_warshall(graph):  
    num_nodes = len(graph)  
    distances = [[float('inf')] * num_nodes for _ in range(num_nodes)]  
    previous_nodes = [[-1] * num_nodes for _ in range(num_nodes)]  

    for u in graph:  
        for v, weight in graph[u]:  
            distances[u][v] = weight  
            previous_nodes[u][v] = u  
            distances[v][u] = weight  # 对于无向图  
            previous_nodes[v][u] = v  

    for i in range(num_nodes):  
        distances[i][i] = 0  

    for k in range(num_nodes):  
        for i in range(num_nodes):  
            for j in range(num_nodes):  
                if distances[i][j] > distances[i][k] + distances[k][j]:  
                    distances[i][j] = distances[i][k] + distances[k][j]  
                    previous_nodes[i][j] = previous_nodes[k][j]  

    return distances, previous_nodes  

def reconstruct_path(previous_nodes, start, end):  
    path = []  
    while end != -1:  
        path.append(end)  
        end = previous_nodes[start][end]  
    path.reverse()  
    return path if path and path[0] == start else []   

# 图的表示(邻接表)  
graph_floyd = {  
    0: [(1,4), (7, 8)],  
    1: [(0, 4), (7, 11), (2, 8)],  
    2: [(1, 8), (8, 2), (3, 7),(5,4)],  
    3: [(2,7 ), (5, 14), (4, 9)],  
    4: [(3, 9),(5,10)],
    5: [(2,4),(3,14),(4,10),(6,2)],
    6: [(5,2),(7,1),(8,6)],
    7: [(0,8),(1,4),(6,1),(8,7)],
    8: [(2,2),(6,6),(7,7)]
}  

distances_floyd, previous_nodes_floyd = floyd_warshall(graph_floyd)  
start_node = 0  
end_node = 4  

print(f"\n从节点 {start_node} 到节点 {end_node} 的最短距离: {distances_floyd[start_node][end_node]}")  
path = reconstruct_path(previous_nodes_floyd, start_node, end_node)  
print(f"从节点 {start_node} 到节点 {end_node} 的最短路径: {path}") 
相关推荐
前端付豪4 分钟前
13、你还在 print 调试🧾?教你写出自己的日志系统
后端·python
CoovallyAIHub6 分钟前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
这里有鱼汤8 分钟前
hvPlot:用你熟悉的 Pandas,画出你没见过的炫图
后端·python
源码站~20 分钟前
基于Flask+Vue的豆瓣音乐分析与推荐系统
vue.js·python·flask·毕业设计·毕设·校园·豆瓣音乐
MessiGo25 分钟前
Python 爬虫实战 | 国家医保
python
转转技术团队39 分钟前
边学边做:图片识别技术的学习与应用
后端·算法
chanalbert41 分钟前
Spring 6 源码深度掘金:66+核心原理与高频面试攻坚指南
python·spring·面试
一块plus1 小时前
2025 年值得一玩的最佳 Web3 游戏
算法·设计模式·程序员
前端拿破轮1 小时前
不是吧不是吧,leetcode第一题我就做不出来?😭😭😭
后端·算法·leetcode
一块plus1 小时前
什么是去中心化 AI?区块链驱动智能的初学者指南
人工智能·后端·算法